首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张帆  杜博  张良培  张乐飞 《计算机科学》2014,41(12):275-279
如何准确识别图像中的类别信息,是计算机视觉和模式识别领域的重要研究问题。遥感卫星图像数据,尤其是高光谱等遥感图像数据的出现,将空间信息与光谱信息集成于同一数据集中,丰富了图像信息来源。如何准确地识别高光谱图像中的地物类别,已经成为了图像处理和模式识别领域的热点问题。面向高光谱图像数据提出了一种基于波段分组特征和形态学特征的高光谱图像分类方法,结合空间和光谱特征提高分类精度。通过真实的高光谱数据实验证明:利用波段分组可以有效地保持光谱特征,降低数据冗余;在波段分组基础上结合形态学特征进行分类,比传统分类方法的分类精度明显提高。  相似文献   

2.
The analysis of hyperspectral images is usually very heavy from the computational point-of-view, due to their high dimensionality. In order to avoid this problem, band selection (BS) has been widely used to reduce the dimensionality before the analysis. The aim is to extract a subset of the original bands of the hyperspectral image, preserving most of the information contained in the original data. The BS technique can be performed by prioritizing the bands on the basis of a score, assigned by specific criteria; in this case, BS turns out in the so-called band prioritization (BP). This paper focuses on BP algorithms based on the following parameters: signal-to-noise ratio, kurtosis, entropy, information divergence, variance and linearly constrained minimum variance. In particular, an optimized C serial version has been developed for each algorithm from which two parallel versions have been derived using OpenMP and NVIDIA’s compute unified device architecture. The former is designed for a multi-core CPU, while the latter is designed for a many-core graphics processing unit. For each version of these algorithms, several tests have been performed on a large database containing both synthetic and real hyperspectral images. In this way, scientists can integrate the proposed suite of efficient BP algorithms into existing frameworks, choosing the most suitable technique for their specific applications.  相似文献   

3.
分段2维主成分分析的超光谱图像波段选择   总被引:1,自引:1,他引:0       下载免费PDF全文
目的 超光谱图像具有极高的谱间分辨率,巨大的数据量给分类识别等后续处理带来很大压力。为了有效降低图像数据维数,提出基于分段2DPCA的超光谱图像波段选择算法。方法 首先根据谱间相关性对原始图像进行波段分组,然后根据主成分反映每个光谱波段的信息比重分别对每组图像进行波段选择,从而实现超光谱图像的谱间降维。结果 该算法有效降低了超光谱图像的光谱维数,选择的波段明显反映出不同地物像元矢量的区别。结论 实验结果表明,该波段选择算法相对传统算法速度更快,并且较好地保留了原始图像的局部重要信息,对后续处理有积极意义。  相似文献   

4.
潘宗序  禹晶  肖创柏  孙卫东 《自动化学报》2014,40(12):2797-2807
光谱相似性是指高光谱图像中的大量像元具有相似光谱的性质.提出了一种基于光谱相似性的高光谱遥感图像超分辨率算法,利用遥感图像中广泛存在的结构自相似性提升图像的空间分辨率,利用高光谱图像的低维子空间性通过主成分分析降低光谱维数提高运算效率,利用具有相似光谱的像元构建光谱约束项保证重建图像光谱的准确性.该算法在将单波段图像超分辨率方法推广到处理具有数百、乃至上千波段的高光谱图像过程中,既保证了重建图像光谱的准确性,又具有较高的运算效率.实验表明,与双三次插值和基于稀疏表示与光谱正则化约束的高光谱图像超分辨率算法相比,该算法具有更高的空间分辨率提升能力和更好的光谱保真能力.  相似文献   

5.
Hyperspectral images are widely used in real applications due to their rich spectral information. However, the large volume brings a lot of inconvenience, such as storage and transmission. Hyperspectral band selection is an important technique to cope with this issue by selecting a few spectral bands to replace the original image. This article proposes a novel band selection algorithm that first estimates the redundancy through analysing relationships among spectral bands. After that, spectral bands are ranked according to their relative importance. Subsequently, in order to remove redundant spectral bands and preserve the original information, a maximal linearly independent subset is constructed as the optimal band combination. Contributions of this article are listed as follows: (1) A new strategy for band selection is proposed to preserve the original information mostly; (2) A non-negative low-rank representation algorithm is developed to discover intrinsic relationships among spectral bands; (3) A smart strategy is put forward to adaptively determine the optimal combination of spectral bands. To verify the effectiveness, experiments have been conducted on both hyperspectral unmixing and classification. For unmixing, the proposed algorithm decreases the average root mean square errors (RMSEs) by 0.05, 0.03, and 0.05 for the Urban, Cuprite, and Indian Pines data sets, respectively. With regard to classification, our algorithm achieves the overall accuracies of 77.07% and 89.19% for the Indian Pines and Pavia University data sets, respectively. These results are close to the performance with original images. Thus, comparative experiments not only illustrate the superiority of the proposed algorithm, but also prove the validity of band selection on hyperspectral image processing.  相似文献   

6.
Hyperspectral images usually consist of hundreds of spectral bands, which can be used to precisely characterize different land cover types. However, the high dimensionality also has some disadvantages, such as the Hughes effect and a high storage demand. Band selection is an effective method to address these issues. However, most band selection algorithms are conducted with the high-dimensional band images, which will bring high computation complexity and may deteriorate the selection performance. In this paper, spatial feature extraction is used to reduce the dimensionality of band images and improve the band selection performance. The experiment results obtained on three real hyperspectral datasets confirmed that the spatial feature extraction-based approach exhibits more robust classification accuracy when compared with other methods. Besides, the proposed method can dramatically reduce the dimensionality of each band image, which makes it possible for band selection to be implemented in real time situations.  相似文献   

7.
Hyperspectral band selection aims at the determination of an optimal subset of spectral bands for dimensionality reduction without loss of discriminability. Many conventional band selection approaches depend on the concept of “statistical distance” measure between the probability distributions characterizing sample classes. However, the maximization of separability does not necessarily guarantee that a classification process results in the best classification accuracies. This paper presents a multidimensional local spatial autocorrelation (MLSA) measure that quantifies the spatial autocorrelation of the hyperspectral image data. Based on the proposed spatial measure, a collaborative band selection strategy is developed that combines both spectral separability measure and spatial homogeneity measure for hyperspectral band selection without losing the spectral details useful in classification processes. The selected band subset by the proposed method shows both larger separability between classes and stronger spatial similarity within class. Case studies in biomedical and remote sensing applications demonstrate that the MLSA-based band selection approach improves object classification accuracies in hyperspectral imaging compared with conventional approaches.  相似文献   

8.
In this paper, we propose a new optimization-based framework to reduce the dimensionality of hyperspectral images. One of the most problems in hyperspectral image classification is the Hughes phenomenon caused by the irrelevant spectral bands and the high correlation between the adjacent bands. The problematic is how to find the relevant bands to classify the pixels of hyperspectral image without reducing the classification accuracy rate. We propose to reformulate the problem of band selection as a combinatorial problem by modeling an objective function based on class separability measures and the accuracy rate. We use the Gray Wolf Optimizer, which is a new meta-heuristic algorithm more efficient than Practical Swarm Optimization, Gravitational Search Algorithm, Differential Evolution, Evolutionary Programming and Evolution Strategy. The experimentations are performed on three widely used benchmark hyperspectral datasets. Comparisons with the state-of-the-art approaches are also conducted. The analysis of the results proves that the proposed approach can effectively investigate the spectral band selection problem and provides a high classification accuracy rate by using a few samples for training.  相似文献   

9.
Hyperspectral sensors often collect hundreds of bands at a time, so hyperspectral images can accurately characterize different land-cover types with abundant spectral information. However, these spectral bands also contain redundant information that needs to be removed. Band selection is one of the most widely used methods to remove noised or redundant bands. Because labelled samples are difficult to collect, most band selection methods adopt unsupervised ways to select diverse and representative bands. Still, noised bands are often selected because they usually have low correlation with other bands. In this article, objective image quality assessment is introduced to indicate the quality of every band, and combined with the redundancy measure, a new unsupervised band selection method is proposed. Three real hyperspectral images are used to demonstrate the effectiveness of the proposed algorithm.  相似文献   

10.
Due to the very large number of bands in hyperspectral imagery, two major problems which arise during classification are the ‘curse of dimensionality’ and computational complexity. To overcome these, dimensionality reduction is an important task for hyperspectral image analysis. An unsupervised band elimination method is proposed which iteratively eliminates one band from the pair of most correlated neighbouring bands depending on the discriminating capability of the bands. Correlation between neighbouring bands is calculated over partitioned band images. Capacitory discrimination is used to measure the discrimination capability of a band image. Finally, four evaluation measures, namely classification accuracy, kappa coefficient, class separability, and entropy are calculated over the selected bands to measure the efficiency of the proposed method. The proposed unsupervised band elimination technique is compared to three popular state-of-the-art approaches, both qualitatively and quantitatively, and shows promising results compared to them.  相似文献   

11.
许明明  张良培  杜博  张乐飞 《计算机科学》2015,42(4):274-275, 296
高光谱遥感数据具有丰富的光谱信息,应用十分广泛,但其冗余的光谱信息有时会限制高光谱图像的分类等的精度以及计算复杂度.为了提高解译效率,高光谱图像降维不可或缺,这也是高光谱图像处理的研究热点之一.提出了一种基于类别可分性的高光谱图像波段选择方法(Endmember Separability Based band Selection,ESBB),该方法通过Mahalanobis距离最大化图像中各类地物的可分性来确定最优的波段组合.相较于其他监督波段选择算法,该方法不需要大量训练样本,不用对每个组合做分类处理.对波段选择后的结果进行分类的实验结果证明,该方法是一个快速有效的波段选择方法,可以得到一个较好的分类精度.  相似文献   

12.
高光谱成像遥感技术可获取地物的光谱、辐射和空间信息,在国民经济的各个领域得到广泛的应用.但其狭窄的波段间距带来丰富光谱信息的同时,也带来了信息冗余,增加了数据处理的难度.因此,高光谱遥感数据在进行实际应用前,需要进行波段选择并提取光谱特征,降低数据维数.对高光谱遥感图像的波段选择研究进展进行了综述,在分析、归纳波段选择...  相似文献   

13.
有效的波段选择方法可以极大地提高高光谱图像处理速度的同时改善处理效果。为了自动判断低信噪比波段,提出了一种基于小波变换的图像信噪比估计(SNR estimation,SNRE)方法,利用小波变换后对角方向上的高频成分估计噪声方差并计算信噪比。将该方法分别结合基于方差和相关系数(V_COR)的最优索引指数、最大信息量(MI)、高阶矩(偏度或峰度)结合信息散度(K3_KL)等3种基于信息量的波段选择方法后选择波段。将这些改进后的波段选择方法应用于高光谱异常检测。实验结果表明SNRE预选波段结合MI和K3_KL选择波段用于异常检测能进一步提高检测精度。  相似文献   

14.
Hyperspectral image contains various wavelength channels and the corresponding imagery processing requires a computation platform with high performance. Target and anomaly detection on hyperspectral image has been concerned because of its practicality in many real-time detection fields while wider applicability is limited by the computing condition and low processing speed. The field programmable gate arrays (FPGAs) offer the possibility of on-board hyperspectral data processing with high speed, low-power consumption, reconfigurability and radiation tolerance. In this paper, we develop a novel FPGA-based technique for efficient real-time target detection algorithm in hyperspectral images. The collaborative representation is an efficient target detection (CRD) algorithm in hyperspectral imagery, which is directly based on the concept that the target pixels can be approximately represented by its spectral signatures, while the other cannot. To achieve high processing speed on FPGAs platform, the CRD algorithm reduces the dimensionality of hyperspectral image first. The Sherman–Morrison formula is utilized to calculate the matrix inversion to reduce the complexity of overall CRD algorithm. The achieved results demonstrate that the proposed system may obtains shorter processing time of the CRD algorithm than that on 3.40 GHz CPU.  相似文献   

15.
Hyperspectral images provide fine details of the scene under analysis in terms of spectral information. This is due to the presence of contiguous bands that make possible to distinguish different objects even when they have similar colour and shape. However, neighbouring bands are highly correlated, and, besides, the high dimensionality of hyperspectral images brings a heavy burden on processing and also may cause the Hughes phenomenon. It is therefore advisable to make a band selection pre-processing prior to the classification task. Thus, this paper proposes a new supervised filter-based approach for band selection based on neural networks. For each class of the data set, a binary single-layer neural network classifier performs a classification between that class and the remainder of the data. After that, the bands related to the biggest and smallest weights are selected, so, the band selection process is class-oriented. This process iterates until the previously defined number of bands is achieved. A comparison with three state-of-the-art band selection approaches shows that the proposed method yields the best results in 43.33% of the cases even with greatly reduced training data size, whereas the competitors have achieved between 13.33% and 23.33% on the Botswana, KSC and Indian Pines datasets.  相似文献   

16.
在高光谱图像分析领域中,波段选择是一种能有效减少高光谱图像维度的方法。K类仿射传播算法是一种高效的聚类算法,已成功地应用于人脸识别和数据分析等领域,但在高光谱图像分析领域还少有成功的应用。提出将K-AP算法应用于高光谱图像波段选择,对高光谱图像进行有效的数据压缩。针对K-AP算法的特点,基于Kullback-Leibler散度定义了新的相似度矩阵,对波段进行度量,再使用K-AP算法进行聚类,选择最有代表性的波段。实验结果表明,与常用的波段选择方法相比,所提出的方法有更好的表现。  相似文献   

17.
针对高光谱图像存在Hughes现象,以及空间和光谱特征利用效率低的问题,提出了一种结合标准分数降维和深度学习的高光谱图像分类算法。利用标准分数对高光谱数据的波段质量进行评价以剔除高光谱遥感图像中的冗余波段,结合优化过的3D-CNN(3D Convolutional Neural Network)分类方法,通过使用大步距卷积层替代池化层,引入L2正则化、批量归一化(Batch Normalization,BN)、Dropout等一系列策略,在减少网络参数的同时有效防止过拟合现象。通过Pavia Centre和Pavia University两个公开高光谱数据集的实验测试,该算法大幅度降低了网络模型的参数和计算量,取得了99.01%和95.99%的分类精度。  相似文献   

18.
ABSTRACT

With hundreds of spectral bands, the rise of the issue of dimensionality in the classification of hyperspectral images is usually inevitable. In this paper, a restrictive polymorphic ant colony algorithm (RPACA) based band selection algorithm (RPACA-BS) was proposed to reduce the dimensionality of hyperspectral images. In the proposed algorithm, both local and global searches were conducted considering band similarity. Moreover, the problem of falling into local optima, due to the selection of similar band subsets although travelling different paths, was solved by varying the pheromone matrix between ants moving in opposite directions. The performance of the proposed RPACA-BS algorithm was evaluated using three public datasets (the Indian Pines, Pavia University and Botswana datasets) based on average overall classification accuracy (OA) and CPU processing time. The experimental results showed that average OA of RPACA-BS was up to 89.80%, 94.96% and 92.17% for the Indian Pines, Pavia University and Botswana dataset, respectively, which was higher than that of the benchmarks, including the ant colony algorithm-based band selection algorithm (ACA-BS), polymorphic ant colony algorithm-based band selection algorithm (PACA-BS) and other band selection methods (e.g. the ant lion optimizer-based band selection algorithm). Meanwhile, the time consumed by RPACA-BS and PACA-BS were slightly lower than that of ACA-BS but obviously lower than that of other benchmarks. The proposed RPACA-BS method is thus able to effectively enhance the search abilities and efficiencies of the ACA-BS and PACA-BS algorithms to handle the complex band selection issue for hyperspectral remotely sensed images.  相似文献   

19.
In this paper, we investigate the practical implementation issues of the real-time constrained linear discriminant analysis (CLDA) approach for remotely sensed image classification. Specifically, two issues are to be resolved: (1) what is the best implementation scheme that yields lowest chip design complexity with comparable classification performance, and (2) how to extend CLDA algorithm for multispectral image classification. Two limitations about data dimensionality have to be relaxed. One is in real-time hyperspectral image classification, where the number of linearly independent pixels received for classification must be larger than the data dimensionality (i.e., the number of spectral bands) in order to generate a non-singular sample correlation matrix R for the classifier, and relaxing this limitation can help to resolve the aforementioned first issue. The other is in multispectral image classification, where the number of classes to be classified cannot be greater than the data dimensionality, and relaxing this limitation can help to resolve the aforementioned second issue. The former can be solved by introducing a pseudo inverse initiate of sample correlation matrix for R-1 adaptation, and the latter is taken care of by expanding the data dimensionality via the operation of band multiplication. Experiments on classification performance using these modifications are conducted to demonstrate their feasibility. All these investigations lead to a detailed ASIC chip design scheme for the real-time CLDA algorithm suitable to both hyperspectral and multispectral images. The proposed techniques to resolving these two dimensionality limitations are instructive to the real-time implementation of several popular detection and classification approaches in remote sensing image exploitation.  相似文献   

20.
Feature weighting based band selection provides a computationally undemanding approach to reduce the number of hyperspectral bands in order to decrease the computational requirements for processing large hyperspectral data sets. In a recent feature weighting based band selection method, a pair‐wise separability criterion and matrix coefficients analysis are used to assign weights to original bands, after which bands identified to be redundant using cross correlation are removed, as it is noted that feature weighting itself does not consider spectral correlation. In the present work, it is proposed to use phase correlation instead of conventional cross correlation to remove redundant bands in the last step of feature weighting based hyperspectral band selection. Support Vector Machine (SVM) based classification of hyperspectral data with a reduced number of bands is used to evaluate the classification accuracy obtained with the proposed approach, and it is shown that feature weighting band selection with the proposed phase correlation based redundant band removal method provides increased classification accuracy compared to feature weighting band selection with conventional cross correlation based redundant band removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号