首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogenous AlxGa1-xP liquid phase epitaxial layers have been obtained with the temperature difference method under controlled vapor pressure (TDM-CVP). Very clear fine structures near band edge in photoluminescence spectra have been observed at 77 K for the first time. Photoluminescence measurement results confirmed that the free exciton recombination without phonon assistance plays an important role in the luminescence at 77 K and becomes dominant at room temperature. It is considered that zero-phonon assisted free exciton recombination is intensified by some local perturbations to electrical potentials against carriers or excitons introduced by Al atoms in AlxGa1-xP layers, which can give momentum change necessary for recombination.  相似文献   

2.
Electrical and optical activation studies of lower dose Si-implanted AlxGa1?xN (x=0.14 and 0.24) have been made systematically as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1×1013 cm?2 to 1×1014 cm?2 at room temperature. The samples were proximity cap annealed from 1,100°C to 1,350°C with a 500-Å-thick AlN cap in a nitrogen environment. Nearly 100% electrical activation efficiency was obtained for Al0.24Ga0.76N implanted with a dose of 1 × 1014 cm?2 after annealing at an optimum temperature around 1,300°C, whereas for lower dose (≤5×1013 cm?2) implanted Al0.24Ga0.76N samples, the electrical activation efficiencies continue to increase with anneal temperature up through 1,350°C. Seventy-six percent electrical activation efficiency was obtained for Al0.14Ga0.86N implanted with a dose of 1 × 1014 cm?2 at an optimum anneal temperature of around 1,250°C. The highest mobilities obtained were 89 cm2/Vs and 76 cm2/Vs for the Al0.14Ga0.86N and Al0.24Ga0.76N, respectively. Consistent with the electrical results, the photoluminescence (PL) intensity of the donor-bound exciton peak increases as the anneal temperature increases from 1,100°C to 1,250°C, indicating an increased implantation damage recovery with anneal temperature.  相似文献   

3.
Photoluminescence (PL) spectra of Al0.21Ga0.79As/GaAs/Al0.21Ga0.79As double quantum wells (DQWs) separated by a thin AlAs barrier have been studied in the temperature range 77–300 K. The well width was varied from 65 to 175 Å, and the thickness of the AlAs barrier was 5, 10, or 20 Å. In the case of a sufficiently thin (5, 10 Å) AlAs barrier, the energy spectrum of QW states is considerably modified by coupling between the QWs. This effect shifts the main spectral peak of PL, and specific features associated with the splitting of the ground state into symmetric and asymmetric states are observed in the spectra at higher temperatures. The DQW structure with a 20-Å-thick AlAs barrier is a system of two uncoupled asymmetric Al0.21Ga0.79As/GaAs/AlAs QWs. The energy levels in double coupled QWs were calculated as functions of the well width and AlAs barrier thickness, and good correlation with the experimentally observed energies of optical transitions was obtained.  相似文献   

4.
Data are presented demonstrating the formation of native oxides from high Al composition In0.5(AlxGa1-x)0.5P (x≳ 0.9) by simple annealing in a “wet” ambient. The oxidation occurs by reaction of the high Al composition crystal with H2O vapor (in a N2 carrier gas) at elevated temperatures (≥500° C) and results in stable transparent oxides. Secondary ion mass spectrometry (SIMS) as well as scanning and transmission electron microscopy (SEM and TEM) are employed to evaluate the oxide properties, composition, and oxide-semiconductor interface. The properties of native oxides of the In0.5(AlxGa1-x)0.5P system are compared to those of the AlxGa1-xAs system. Possible reaction mechanisms and oxidation kinetics are considered. The In0.5(AlxGa1-x)0.5P native oxide is shown to be of sufficient quality to be employed in the fabrication of stripe-geometry In0.5(AlxGa1-x)0.5P visible-spectrum laser diodes.  相似文献   

5.
Thermophotovoltaic generation of electricity is attracting renewed attention due to recent advances in low bandgap (0.5–0.7 eV) III-V semiconductors. The use of these devices in a number of applications has been reviewed in a number of publications.1–4 Two potential low-bandgap diode materials are InxGa1−xAsySb1−y and InxGa1−xAs. The performance of these devices are comparable (quantum efficiency, open circuit voltage, fill factor) despite the latter’s long-term development for optoelectronics. For an 1100°C blackbody, nominally 0.55 eV devices at 25°C exhibit average photon-weighted internal quantum efficiencies of 70–80%, open circuit voltage factors of 60–65%, and fill factors of 65–70%. Equally important as the energy conversion device is the spectral control filter that effectively transmits above bandgap radiation into the diode and reflects the below bandgap radiation back to the radiator. Recent developments in spectral control technology, including InGaAs plasma filters and nonabsorbing interference filters are presented. Current tandem filters exhibit spectral utilization factors of ∼65% for an 1100°C blackbody.  相似文献   

6.
AlxGa1−xAs epilayers were grown directly on different AlxGa1−xAs substrate-layers by metalorganic chemical vapor deposition (MOCVD). The quality of AlxGa1−-xAs layers was significantly improved when Se-doped AlxGa1−xAs substrate-layers were used. Al0.13Ga0.87As epilayers with excellent morphology, optical, and crystal quality were grown on Se-doped Al0.26Ga0.74As. The full width at half maximum of the bound exciton peak as low as 4.51 meV was measured by low-temperature (14.9K) photoluminescence. The improvement is attributed to a Se passivation effect at the surface of Se-doped AlxGa1−xAs substrate-layers. Results suggest that Se will reduce and delay the formation of native oxides.  相似文献   

7.
High-quality AlxGa1−xAs layers with aluminum arsenide contentx up to 0.34 have been grown in a low pressure metalorganic chemical vapor deposition (MOCVD) system using trimethylgallium (TMG), trimethylamine alane (TMAA) and arsine. The carbon content in these films depended on growth conditions but was in general lower than in those obtained with trimethylaluminum (TMA) instead of TMAA in the same reactor under similar conditions. Unlike TMA grown layers, the TMAA grown AlxGa1−xAs layers, (grown at much lower temperature—down to 650° C), exhibited room temperature photolu-minescence (PL). Low temperature (25 K) PL from these films showed sharp bound exciton peaks with a line width of 5.1 meV for Al0.25Ga0.75As. A 39 period Al0.28Ga0.72As (5.5 nm)/GaAs (8.0 nm) superlattice grown at 650° C showed a strong PL peak at 25 K with a line width of 5.5 meV attesting to the high quality of these layers.  相似文献   

8.
Green light emissions from GaP-AlxGa1−xP single and double heterostructures fabricated by temperature difference method under controlled vapor pressure liquid phase epitaxy, have been studied. When the luminescent layer GaP is very thin, we have observed efficient free exciton emissions from GaP-AlxGa1−xP double heterostructures while there is no detection from homostructures. At least ten times and two times stronger luminescence efficiencies were obtained from double heterostructures at 77K and room temperature, respectively. The higher free exciton recombination efficiency is thought to profit from free carrier confinement by potential barrier at the interface of GaP and AlxGa1−xP. Also, it is found that shallow impurities enhance the photoluminescence intensities in GaP-AlxGa1−xP double heterostructures.  相似文献   

9.
The stimulation of photoluminescence in a graded-gap AlxGa1?x As semiconductor was studied. It is shown that stimulation by external illumination makes it possible to increase the internal quantum yield of luminescence and specify the direction in which stimulated emission propagates. A method is proposed for measuring the internal quantum efficiency.  相似文献   

10.
Growth conditions and properties of AlxGa1-xAs (0.1 ≤ × ≤O.3) using metalorganic vapour phase epitaxy (MO-VPE) are investigated. N-type is achieved either by silicon or by selenium doping. Properties of the layers are evaluated by Hall effect, cathodoluminescence and photoluminescence. It is shown that selenium doping leads to luminescent material : when x = O.1, the efficiency is only a factor of 2 smaller than for GaAs. Deposition temperature is a critical parameter : increasing the growth temperature yields more luminescent Alx Ga1-x As. This work has been partly supported by the Délégation à la Recherche Scientifique et Technique (D.G.R.S.T.)  相似文献   

11.
We compare the electrical power dependence of the lattice temperature and the electronic temperature of GaAs/AlxGa1-xAs THz quantum cascade lasers (QCLs) with different active region schemes, as extracted by the analysis of microprobe band-to-band photoluminescence experiments. Thermalized non-equilibrium distributions are found in all classes of QCLs. While in the case of bound-to-continuum structures all subbands share the same temperature, the upper laser level of active regions based on the resonant-phonon scheme heats up by ΔT ~ 100 K with respect to lower energy levels. The comparison among samples with different Al mole fractions show that the use of smaller x values leads to larger electronic temperatures.  相似文献   

12.
Variable temperature Hall measurements were used to study the electrical properties of undoped and Se-doped AlxGa1-xAs (0 <x < 0.4) layers grown by metalorganic vapour phase epitaxy (MOVPE). It is shown that the deep donor activation energy measured in undoped AlGaAs exhibits a similar dependency upon composition as that reported for Si-doped AlGaAs grown by MBE. For AlxGa1-xAs, doping with selenium is found to reduce the activation energy from 66 meV (forn = 4.1 x 1016/cm3), to 9 meV (forn = 1.6 × 1018/cm3).  相似文献   

13.
This paper reports the results of atmospheric pressure organometallic vapor phase epitaxial growth of (Al x Ga1-x )0.51 0.49P thin films using tertiarybutylphosphine (TBP) as the phosphorus source. The trimethylalkyls were used as group III sources. The growth temperature was 680° C. It was observed that V/III ratio dramatically affected the surface morphology and photoluminescence (PL). The epilayers grown at a V/III ratio lower than 60 had rough surfaces and weak PL emission. An input V/III ratio larger than 70 was required to obtain good surfaces and strong PL emission. Good quality (AlxGa1-x )0.51 0.49P epilayers forx ≤ 0.62 were obtained at a V/III ratio of 85. The surface morphologies were smooth except for the occurrence of dense oval-shaped hillocks forx > 0.42. The Al distribution coefficient using TBP is the same as for phosphine (PH3), which was used as the phosphorus source in previous AlGalnP growth. No parasitic reactions between TBP and trimethylalkyls were observed. 10 and 300 K PL emission was observed for all epilayers withx ≤ 0.62. However, the PL peak energy did not follow the band gap, as obtained for (AlxGa1-x )0.51 0.49P epilayers grown using PH3. The PL peak energy at both 10 and 300 K increased with increasingx forx ≤ 0.35, and then became nearly constant with further increases inx. In this region the PL is believed to be from a process involving a deep energy level, induced by an impurity from the TBP, bound to theX conduction band minimum. It was concluded that TBP has the potential to replace PH3 for OMVPE growth of Al-containing compounds, although the purity needs to be improved.  相似文献   

14.
In1?xGaxP vapor-grown electroluminescent junctions have been deposited directly onto GaAs substrates. For these layers, an alloy composition within a few mole percent of the lattice-matching composition of 51.5 mole percent GaP has been found to be essential for high luminous efficiencies and for the avoidance of microcracks throughout the epitaxial layer. For In1?xGaxP alloys near this composition, the electroluminescence characteristics of the diodes have been found to be excellent, with room-temperature external quantum efficiencies as high as 0.2% attained for red emission near 6600 Å. The properties of In.5Ga.5P junction structures deposited directly onto GaAs ar? compared with those of In1?xGaxP layers previously prepared on GaP substrates.  相似文献   

15.
To theoretically research the influence of a varied Al component on the active layer of AlGaN photocathodes, the first principle based on density functional theory is used to calculate the formation energy and band structure of AlxGa1-xN with x at 0, 0.125, 0.25, 0.325, and 0.5. The calculation results show that the formation energy declines along with the Al component rise, while the band gap is increasing with Al component increasing. AlxGa1-x with x at 0, 0.125, 0.25, 0.325, and 0.5 are direct band gap semiconductors, and their absorption coefficient curves have the same variation tendency. For further study, we designed two kinds of reflection-mode AlGaN photocathode samples. Sample 1 has an AlxGa1-x active layer with varied Al component ranging from 0.5 to 0 and decreasing from the bulk to the surface, while sample 2 has an AlxGa1-x active layer with the fixed Al component of 0.25. Using the multi-information measurement system, we measured the spectral response of the activated samples at room temperature. Their photocathode parameters were obtained by fitting quantum efficiency curves. Results show that sample 1 has a better spectral response than sample 2 at the range of short-wavelength. This work provides a reference for the structure design of the AlGaN photocathode.  相似文献   

16.
Structural and optical properties of InAs quantum dots (QDs) grown in a wide-bandgap Al0.3Ga0.7As matrix is studied. It is shown that a high temperature stability of optical properties can be achieved owing to deep localization of carriers in a matrix whose band gap is wider than that in GaAs. Specific features of QD formation were studied for different amounts of deposited InAs. A steady red shift of the QD emission peak as far as ∼1.18 μm with the effective thickness of InAs in Al0.3Ga0.7As increasing was observed at room temperature. This made it possible to achieve a much higher energy of exciton localization than for QDs in a GaAs matrix. To obtain the maximum localization energy, the QD sheet was overgrown with an InGaAs layer. The possibility of reaching the emission wavelength of ~1.3 μm is demonstrated. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 37, No. 5, 2003, pp. 578–582. Original Russian Text Copyright ? 2003 by Sizov, Samsonenko, Tsyrlin, Polyakov, Egorov, Tonkikh, Zhukov, Mikhrin, Vasil’ev, Musikhin, Tsatsul’nikov, Ustinov, Ledentsov.  相似文献   

17.
Selective-area growth and regrowth using conventional atmospheric pressure metalorganic chemical vapor deposition is investigated for wavelength tuning in strained layer InxGa1-xAsGaAs-Aly Ga1-yAs quantum well lasers. Growth inhibition from a silicon dioxide mask is the mechanism used for the selective-area growth rate enhancement. By varying the width of the oxide stripe opening, differences in the growth rate yield different quantum well thicknesses, and hence different lasing wavelengths for devices on the same wafer. Both two-and three-step growth processes are utilized for selective-area epitaxy of strained layer InxGa1-xAs-GaAs quantum well active regions, with lasers successfully fabricated from the three-step growth. Scanning electron microscopy and transmission electron microscopy indicate that the absence of an oxide mask during AlyGa1-yAs growth is essential for successful device operation. A wide wavelength tuning range of over 630Å is achieved for lasers grown on the same substrate.  相似文献   

18.
We have successfully grown bulk In0.53Ga0.47As on InP using tertiarybutylarsine (TBA), trimethylindium and trimethylgallium. The growth temperature was 602° and the V/III ratio ranged from 19 to 38. Net carrier concentrations were 2 – 4 × 1015 cm-3, n-type, with a peak 77 K mobility of 68,000 cm2/V. sec. Increasing compensation was observed in In0.53Ga0.47As grown at higher V/III ratios. PL spectra taken at 5 K revealed strong near bandgap emission at 0.81 eV—with the best sample having a FWHM of 2.5 meV. At lower energies, donor-acceptor pair transitions were evident. Strong and sharp 5 K PL emission was observed from InP/In0.53Ga0.47As/InP quantum wells grown with TBA.  相似文献   

19.
Results of photoluminescence (PL) studies of self-organized nanoscale InP islands (quantum dots, QDs) in the In0.49Ga0.51P matrix, grown on a GaAs substrate by metalorganic vapor phase epitaxy (MOVPE), are presented. Dependences of the PL efficiency on temperature in the range 77–300 K and on excitation level at pumping power densities of 0.01–5 kW/cm2 have been obtained. The PL spectra are a superposition of emission peaks from QDs and the wetting layer. Their intensity ratio depends on the pumping power and temperature, and the emission wavelength varies in the range 0.65–0.73 μm. At 77 K and low excitation level, InP QDs exhibit high temperature stability of the emission wavelength and high quantum efficiency. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 35, No. 2, 2001, pp. 242–244. Original Russian Text Copyright ? 2001 by Vinokurov, Kapitonov, Nikolaev, Sokolova, Tarasov.  相似文献   

20.
Capacitance and Hall effect measurements in the temperature range 10-300 K were performed to evaluate the deep and shallow level characteristics of Si-doped n-AlxGa-xAs layers with 0 × 0.4 grown by molecular beam epitaxy. For alloy compositions × 0.3 the overall trap concentration was found to be less than 10−2 of the carrier concentration. In this composition range the transport properties of the ternary alloy are comparable to those of n-GaAs:Si except for lower electron mobibities due to alloy scattering. With higher Al content one dominant electron trap determines the overall electrical properties of the material, and in n-Al0.35Ga0.65As:Si the deep trap concentration is already of the order of the free-carrier concentration or even higher. For the composition × = 0.35 ± 0.02 the influence of growth temperature and of Si dopant flux intensity on the deep trap concentration, on shallow and deep level activation energy, and on carrier freeze-out behaviour was studied and analyzed in detail. Our admittance measurements clearly revealed that the previously assumed deepening of the shallow level in n-Alx Ga1-x As of alloy composition close to the direct-indirect cross-over point does actuallynot exist. In this composition range an increase of the Si dopant flux leads to a reduction of the thermal activation energy for electron emission from shallow levels due to a lowering of the emission barrier by the electric field of the impurities. The increasing doping flux also enhances the concentration of the dominant electron trap strongly, thus indicating a participation of the dopant atoms in the formation of deep donor-type (D,X) centers. These results are in excellent agreement with the model first proposed by Lang et al. for interpretation of deep electron traps in n-Alx Ga1-x grown by liquid phase epitaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号