首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
碳酸盐转化工艺作为湿法回收废铅膏的关键步骤具有重要的研究意义。在对废铅膏组分分析的基础上,采用碳酸盐转化方法对比探讨同一条件下不同转化剂的脱硫效果,对转化产物进行XRD表征;同时,探讨(NH_4)_2CO_3脱硫过程的动力学机理。结果表明:转化脱硫率从大到小的顺序为Na_2CO_3、(NH_4)_2CO_3、NH_4HCO_3,以(NH_4)_2CO_3和NH_4HCO_3作为脱硫剂,PbSO_4能被转化生成PbCO_3,而采用Na_2CO_3转化脱硫时,产物中存在NaPb_2(CO_3)_2OH杂质物相。以(NH_4)_2CO_3作为脱硫剂的最佳工艺条件:(NH_4)_2CO_3浓度0.50 mol/L,反应温度50℃,反应时间60 min,搅拌速度500 r/min,液固比5:1,在最佳工艺条件下,脱硫率可达95.66%。PbSO_4在(NH_4)_2CO_3溶液中的转化服从收缩核模型,过程反应速率受扩散控制,计算出表观活化能为16.471 kJ/mol,并最终建立了该脱硫过程的动力学方程式。  相似文献   

2.
碳酸盐转化工艺作为湿法回收废铅膏的关键步骤具有重要的研究意义。在对废铅膏组分分析的基础上,采用碳酸盐转化方法对比探讨同一条件下不同转化剂的脱硫效果,对转化产物进行XRD表征;同时探讨了(NH_4)_2CO_3脱硫过程的动力学机理。结果表明:转化脱硫率从大到小依次为Na_2CO_3、(NH_4)_2CO_3、NH_4HCO_3,以(NH_4)_2CO_3和NH_4HCO_3作为脱硫剂,PbSO_4转化生成PbCO_3;而采用Na_2CO_3转化脱硫时,产物中存在NaPb_2(CO_3)_2OH杂质物相。以(NH_4)_2CO_3作为脱硫剂的最佳工艺条件是(NH_4)_2CO_3浓度0.50 mol/L,反应温度50℃,反应时间60 min,搅拌速度500 r/min,液固比5:1,在此最佳工艺条件下脱硫率可达95.66%。PbSO4在(NH_4)_2CO_3溶液中的转化服从缩核模型,过程反应速率受扩散控制,计算出表观活化能为16.471 kJ/mol,并最终建立了该脱硫过程的动力学方程式。  相似文献   

3.
针对含钒钢渣存在的钙和铁含量高、钒含量低等难以利用的问题,本文研究了含钒钢渣选择性预处理工艺,通过降低含钒钢渣的钙钒比(CaO/V_2O_5比),获得可利用的钒原料。通过分析含钒钢渣在盐酸体系下的分解行为,考察了酸度、反应温度、粒度及液固比等因素对溶出过程的影响,并探讨了反应机理。结果表明:含钒钢渣最优预处理工艺条件为初始酸度2 mol/L、反应温度40℃、液固比8:1、含钒钢渣粒度74~124μm、反应时间10 min。在此最优条件下,CaO含量(质量分数)由41.09%降至14.28%,CaO/V_2O_5比由16降至3,MnO_2、MgO、FeO、SiO_2的溶出率分别达到39%、47%、39%和55%。随着反应的进行,游离氧化钙、氧化铁、铁酸钙等矿相破坏,富集钒的硅酸二钙和硅酸三钙等矿相无变化。经碳酸钠浸出后,钒的提取率由80%提高到85%以上。  相似文献   

4.
本文以白云石为原料,采用碳化法制备高纯氧化镁,重点研究了重镁水制备过程中钙、镁的分离行为。通过优化消化、碳化工艺条件制备高品质重镁水母液,并对重镁水的热解过程进行研究,系统考察了各工艺过程温度对钙镁溶出及分离行为的影响规律。优化的工艺条件为:消化液固比10 ml/g、温度60℃、搅拌转速500 r/min、反应时间1 h;碳化液固比30 ml/g、温度25℃、搅拌转速600 r/min、二氧化碳通入速率2 L/min、碳化时间1 h;90℃条件下热解1 h。在优化工艺条件下,可制备出MgO含量为99.56%且CaO含量为0.16%的片状高纯氧化镁产品。  相似文献   

5.
详细研究氯化铅在碳酸氢铵溶液中的物相转化机理,对比分析同一条件下不同转化剂的转化脱氯效果,转化脱氯效果由大到小依次为NH_4HCO_3、Na_2CO_3、(NH_4)_2CO_3、K_2CO_3;得出NH_4HCO_3作为转化剂时的最佳转化条件:溶液初始pH=10.0、NH_4HCO_3浓度1.68 mol/L、反应温度50℃、反应时间120 min;PbCl_2在转化过程中会经历PbCl_2→CO_3~(2-)Pb_2Cl_2(CO_3)→CO_3~(2-)PbCO_3的转化过程,在最佳工艺条件下转化率可达99%以上,转化产物为纯净的PbCO_3。通过不同转化阶段得到的产物的物相分析,确定PbCl_2在NH_4HCO_3溶液中转化为PbCO_3的机理、途径及影响机制。转化体系的p H值是影响转化率、转化途径及最终产物物相组成的最显著因素,而转化剂浓度、转化时间和温度,只会对PbCl_2脱氯速率造成影响,并不会影响PbCl_2的转化途径和最终产物组成。  相似文献   

6.
石煤钒矿硫酸活化常压浸出提钒工艺   总被引:2,自引:0,他引:2  
研究石煤钒矿的硫酸活化提钒方法。分别考察矿石粒度、硫酸浓度、活化剂用量、催化剂用量、反应温度、反应时间和浸出液固比等因素对钒浸出率的影响。结果表明:石煤提钒的优化条件为矿石粒度小于74μm的占80%、硫酸浓度150 g/L、活化剂CaF2用量(相对于矿石)60 kg/t、催化剂R用量20 g/L、反应温度90℃、反应时间6 h、液固比(体积/质量,mL/g)2:1,在此优化条件下,钒浸出率可达94%以上;在优化条件下,采用两段逆流浸出,可有效减少活化剂CaF2以及浸出剂硫酸的消耗量;经过两段逆流浸出萃取反萃氧化水解工艺,全流程钒资源总回收率可达86.9%;V2O5产品纯度高于99.5%。  相似文献   

7.
针对钒渣在NaOH低温亚熔盐体系中铬无法溶出问题,提出添加活性炭增加介质氧含量强化铬氧化溶出方法,并考察活性炭种类、活性炭添加量、活性炭粒度、温度对钒、铬溶出率的影响。结果表明,在NaOH亚熔盐体系中添加活性炭可有效促进钒和铬的溶出,活性炭种类和温度是最重要的影响因素;在反应温度215℃、碱与矿质量比6:1、通氧量1 L/min、搅拌速度900 r/min、椰壳活性炭添加量10%的条件下,反应进行600 min后钒、铬溶出率分别达到97%和90%。动力学分析表明,添加活性炭后钒渣的氧化分解受界面化学反应控制,钒、铬尖晶石分解反应的表观活化能分别为54.79和411.15 kJ/mol;活性炭起物理吸附氧气作用。  相似文献   

8.
KOH亚熔盐中钒渣的溶出行为   总被引:1,自引:0,他引:1  
对钒渣在KOH亚熔盐体系中的分解动力学进行研究,考察反应温度、碱矿质量比、粒度、气流量等工艺参数对钒渣分解过程的影响,获得最优工艺参数,并对反应机理进行探讨。结果表明,反应温度是最重要的影响因素;钒渣最优浸出条件如下:在反应温度为180℃,碱矿比4:1,KOH碱浓度75%,搅拌速率700 r/min,反应时间300 min,常压通氧气流量为1 L/min的反应条件下,最终钒、铬的浸出率分别达到95%和90%以上。钒渣在KOH亚熔盐介质中氧化分解遵循缩核模型,并主要受内扩散控制,钒和铬分解的表观活化能分别为40.54和50.27 kJ/mol,钒铬尖晶石的氧化以铁橄榄石、石英相的氧化分解为前提。  相似文献   

9.
石煤提钒低温硫酸化焙烧矿物分解工艺   总被引:9,自引:2,他引:7  
针对石煤提钒常压硫酸浸出能耗高、作业周期长的缺陷,提出石煤低温硫酸化焙烧矿物分解新工艺.以贵州凯里石煤为原料,对石煤低温硫酸化焙烧的时间、焙烧温度、硫酸加入量以及焙砂水浸工艺参数进行研究.结果表明:先对石煤进行低温硫酸化焙烧处理,再将焙砂按液固比1.2 mL/g加水于100 ℃下搅拌浸出2 h,钒的浸出率可达78.2%;而在相同酸矿比和固液比的条件下,采用常压直接酸浸石煤时,在100 ℃下搅拌浸出48 h后,钒的浸出率只有67.8%.石煤通过低温硫酸化焙烧可有效强化矿物分解过程,缩短提钒作业周期,提高酸的利用率及钒的浸出率.  相似文献   

10.
氧化钒制取碳化钒的热力学分析   总被引:3,自引:3,他引:3  
采用热力学的方法对以五氧化二钒为原料制取碳化钒的工艺过程进行了分析,分析表明:钒氧化物的转化过程中遵守逐级还原理论。钒氧化物碳化过程中,不转化为金属钒,直接转化为碳化钒。在钒氧化物的转化过程中,应尽可能使其转化为二氧化钒。若采用气相还原碳化的方法,可通过调节气体的流量、配比、还原与碳化工艺参数进行质量控制。  相似文献   

11.
锌冶炼浸出渣中锌主要以铁酸锌的形式存在,针对锌浸渣中铁酸锌难于分解的问题,以铁酸锌作为研究对象,研究二氧化硫作用下铁酸锌中锌的溶出和Fe(Ⅲ)的还原行为。考察初始硫酸浓度、液固比、二氧化硫通入量、反应时间、反应温度对二氧化硫还原分解铁酸锌行为的影响。结果表明:最佳反应条件如下,初始硫酸浓度120 g/L、液固比11:1、二氧化硫通入量0.41×10~(-2)mol/g、反应时间120 min、反应温度105℃。在最佳反应条件下,对锌浸渣开展还原浸出实验,锌的浸出率能达到99%以上,Fe(Ⅲ)的还原率能达到98%。通过ICP-MS和XRD分析表明,锌浸渣中的铁酸锌完全分解,还原浸出渣的主要成分为锌和铅,分别以ZnS和PbSO_4的形式存在。  相似文献   

12.
《轻金属》2016,(6)
采用微波碱溶法浸取焙烧处理的粉煤灰,研究了烧结温度、烧结时间、添加剂比例、微波反应温度、钙硅比、碱液浓度、液固比、微波反应时间等因素对镓溶出效果的影响。综合镓的溶出率以及反应成本等因素,确立了浸取镓的优化条件。试验结果表明:微波碱溶的最优条件应为烧结温度850℃、烧结时间2h、添加剂比例1∶1、反应温度为90℃、钙硅比为1∶1、碱液浓度为200 g/L、液固比为14∶1、反应时间为40 min。在优化条件下,粉煤灰中镓的浸出率可达82.28%。  相似文献   

13.
为得到硫酸镍溶液除铁的合适工艺条件,以硫酸铵焙烧红土镍矿的熟料溶出液为原料,采用 NH4HCO3合成黄铵铁矾。考查了反应温度、反应时间、反应终点pH以及Fe3+初始浓度对除铁率的影响。以上因素均对Fe3+的去除率有显著影响,其中反应温度的影响最为显著。合适的反应条件为:Fe3+初始浓度19.36 g/L、反应温度95℃、反应时间3.5 h、反应终点pH2.5。在此条件下所得到的黄铵铁矾为包含片状或棱形颗粒的花簇结构。  相似文献   

14.
在实验室条件下对熔融态钒渣直接氧化钙化提钒新工艺进行研究。在反应过程中利用纯氧氧化,CaO作为添加剂,硫酸浸出熟料。采用XRD、XPS、SEM及EDS等手段对钒渣熟料进行分析,考察不同CaO/V2O5质量比与硫酸浓度对熟料中钒浸出的影响,并与现行焙烧工艺在能耗方面进行对比。结果表明:钒渣熟料中形成了钒的富集相,钒渣的氧化钙化产物主要为CaV2O5和Ca2V2O7,并对钒酸钙的形成机理进行了阐释;XRD和XPS分析得出熔渣中钒的氧化反应在供氧充足的情况下存在一定限制,CaO的增加能促进五价钒在熔渣中的稳定;在优化的实验条件下(CaO/V2O5质量比0.6,粒度120~150μm,浸出时间2 h,浸出温度90°C,液固比5:1 mL/g,H2SO4浓度20%,搅拌强度500 r/min),钒的浸出率能达到90%;能耗计算得到每处理1000 kg钒渣,利用新工艺可以节约能量1.85×106 kJ。实验与计算结果验证新工艺是一种节能减排的提钒手段。  相似文献   

15.
提出以斜方水合碳铁酸钙为脱硅剂解决亚熔盐法处理一水硬铝石型铝土矿所得高浓碱溶出液的深度脱硅问题.采用非均相方法合成了碳铁酸钙(3CaO·Fe2O3·CaCO3·12H2O)脱硅剂,对影响合成过程的主要因素进行了考察.结果表明,适当提高合成温度、缩短合成时间可以提高水合碳铁酸钙的含量.最优合成工艺条件为:反应温度313 K,反应时间16 h,反应液固比25,搅拌速率500 r/min,氧化钙粒度0.104mm~0.120mm.脱硅过程中,斜方晶系的水合碳铁酸钙转变为立方晶型的钙铁石榴石,在此过程中二氧化硅和少量氧化铝进入晶体结构,形成钙铁硅石榴石和钙铁铝硅石榴石,脱硅产物的铝硅比小于0.5.  相似文献   

16.
为了提高湿法浸出低钒钢渣中钒的浸出率,并为湿法浸出低钒钢渣中钒提供理论依据,从动力学角度分析整个浸出过程,并考察温度、液/固比、浸出时间和搅拌速度对浸出过程的影响。结果表明,在90℃,液/固比为10:1以及4.0mol/L盐酸,过氧化氢8.0mL,浸取90min条件下,低钒钢渣中钒的浸出率可达到98.8%。通过正交实验和动力学推导,得到描述浸出过程的经验方程。低钒钢渣湿法浸出钒的动力学模型为未反应收缩核模型,浸出过程的表观活化能为7.21kJ/mol。该模型表明浸出过程中的控制步骤取决于边界层的扩散速度。提高温度、液/固比和浸出时间,均可增加钒的浸出速度,提高钒的浸出率。  相似文献   

17.
采用钢液中添加钒铁底吹氮气的方法制备了V-N微合金化高强度钢,检测了不同底吹条件下钢中氮含量,并结合热力学计算研究了底吹氮气对钢中碳氮化钒固溶度积的影响。结果表明,钢中氮含量随底吹时间的增加而增大,4次熔炼实验所得钢锭中平均氮含量分别为0.024 7%、0.021 3%、0.012 7%和0.002 4%;高温下,氮含量高时碳氮化钒主要以富N的氮化钒形式析出,而低温下,氮含量低时主要以富C的碳化钒形式析出;碳氮化钒在钢中固溶度积随温度的升高而增大,随钢中氮含量的增加而减小;对不同氮含量的碳氮化钒固溶度积曲线拟合,得到了0.06%V~0.22%C-N钢中碳氮化钒固溶度积随温度变化的函数关系式。  相似文献   

18.
加压酸浸法回收黑色页岩中的钒   总被引:4,自引:0,他引:4  
提出一种在加压条件下酸浸黑色页岩型矿提取钒的新工艺,研究浸出过程中各种工艺参数对钒浸出率指标的影响,同时进行了两段逆流浸出实验;利用电子探针分析矿石中钒在各物相中的分配情况,并在两段逆流浸出基础上进一步强化实验条件,考察了钒浸出率与矿石中钒赋存状态之间的关系.结果表明:该工艺的最佳工艺参数如下,即时间3 h、温度150 ℃、液固比1.2-1、硫酸用量25%、85%矿石粒度粒经小于0.095 mm;在此条件下,钒的一段浸出率为77%左右,而矿石经过两段逆流浸出后,钒浸出率可达90%;钒浸出率与矿石中难溶硅铝酸盐相中的钒占有率呈现消长关系.  相似文献   

19.
针对亚熔盐反应体系处理一水硬铝石型铝土矿后的高浓碱溶出液难以脱硅的问题,提出采用碳铁酸钙作为高浓碱溶液深度脱硅的脱硅剂。采用非均相方法合成了斜方晶型的水合碳铁酸钙(3CaO.Fe2O3.CaCO3.12H2O),并对影响合成过程的主要因素进行了考察。结果表明,反应温度和反应时间对水合碳铁酸钙的合成具有交互影响,合成过程中适当提高温度、缩短合成时间可以提高水合碳铁酸钙的含量。合成水合碳铁酸钙脱硅剂最优的工艺条件为:反应温度303K,反应时间16h,反应液固比25,搅拌速率500r/min;氧化钙粒度在0.104mm~0.120mm范围内。在高浓碱溶液脱硅过程中,水合碳铁酸钙产生了物质结构改变,斜方晶系的水合碳铁酸钙转变为立方晶型的钙铁石榴石,在此过程中二氧化硅和少量氧化铝进入晶体结构,形成钙铁硅石榴石和钙铁铝硅石榴石。脱硅产物中氧化铝含量低于1%,氧化钠含量低于2%,SiO2含量高于2%,脱硅产物的铝硅比小于0.5;通过加入水合碳铁酸钙进行高浓碱介质下的溶液深度脱硅,可使溶液中二氧化硅浓度低于0.1g/L。  相似文献   

20.
钒钛磁铁矿提钒尾渣浸取钒   总被引:1,自引:0,他引:1  
采用硫酸氢氟酸次氯酸钠组合浸出体系浸取钒钛磁铁矿提钒尾渣中的钒,研究浸出过程中试剂浓度、浸出液固比、浸出温度、浸出时间、物料粒度对钒浸出率的影响。结果表明:钒的浸出率随试剂浓度、液固比、温度和时间的升高而增大;当矿物粒度小于0.20 mm时,钒浸出率有随矿物粒度变小而减小的趋势。在物料粒度0.15~0.25 mm、初始硫酸浓度150 g/L、初始氢氟酸浓度30 g/L、次氯酸钠加入量为矿量1.5%、矿浆液固比6:1、浸出温度90℃、浸出时间6 h、搅拌速度500 r/min的条件下,钒的浸出率可达85%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号