首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的研究Al靶直流溅射功率对Al掺杂ZnO(AZO)薄膜光电性能的影响。方法以金属Al和ZnO陶瓷作为靶材,采用直流与射频双靶磁控共溅射的方法,在玻璃基片上制备AZO薄膜。通过改变Al靶直流溅射功率,获得不同的薄膜。采用X射线衍射仪(XRD)、光电子能谱仪(XPS)、原子力显微镜(AFM)、紫外-可见分光光度计(UV-Vis)、四探针测试仪,对薄膜的微观形貌结构及光电性能进行表征和分析。结果所制备的AZO薄膜均具有C轴取向生长的六角纤锌矿结构,在可见光区域平均透过率超过90%,AZO薄膜的吸收边相比于ZnO薄膜出现了蓝移。当Al靶溅射功率为18 W时,AZO薄膜的最低电阻率为2.49×10~(-3)?·cm,品质因子为370.2 S/cm。结论 Al直流溅射功率对AZO薄膜光电性能的影响较大,溅射功率为18 W时,制备的AZO薄膜性能最优。  相似文献   

2.
采用双靶射频磁控溅射沉积掺铝氧化锌(AZO)薄膜作为铜锌锡硫(CZTS)太阳能电池的低阻窗口层。研究了在溅射功率60 W、溅射时间30 min的工艺条件下,氩气(Ar)流量对AZO薄膜的结晶性、表面形貌、光透过率、电阻率、载流子浓度等光电性能的影响。结果表明,最优Ar气流量为22 cm~3/min,该流量下AZO晶粒大,结晶性能好,AZO薄膜的载流子浓度高,电阻率小,薄膜在400~1100 nm波长下的光透过率为87.2%。  相似文献   

3.
采用直流射频耦合磁控溅射技术,以氧化锌掺铝(AZO,2%Al_2O_3,质量分数)陶瓷靶为靶材,在玻璃基片上低温沉积AZO薄膜,并采用质量分数为0.5%的HCl溶液刻蚀制备绒面AZO薄膜,通过XRD、SEM、分光光度计、霍尔效应测试系统、光电雾度仪等设备重点研究工作压强对直流射频耦合磁控溅射制备AZO薄膜的晶相结构、表面形貌、光电性能以及后期制绒的影响。研究表明,直流射频耦合磁控溅射可以在低温下制备性能优异的AZO薄膜,且随着工作压强的减小,致密性增强,光电性能改善,后期刻蚀得到具有良好陷光作用的绒面结构。在工作压强0.5 Pa下,低温制备的AZO薄膜电阻率达到3.55×10~(-4)Ω·cm,薄膜可见光透过达到88.36%,刻蚀后电阻率为4.19×10~(-4)Ω·cm,可见光透过率89.59%,雾度达24.7%。  相似文献   

4.
利用两种中频交流磁控溅射电源,溅射Al2O3含量为2%的两块氧化锌铝陶瓷靶材,在不同衬底温度的条件下制备得到了ZAO薄膜。研究了不同衬底温度条件下不同靶材和溅射电源对ZAO薄膜结构、电学和光学性能的影响。结果表明,制备得到的ZAO薄膜均具有c轴择优取向生长的晶体结构,在衬底温度为240℃时,得到的ZAO薄膜的电阻率低至1.4×10-3Ω·cm,可见光平均透过率在82%以上。  相似文献   

5.
溅射功率对射频磁控溅射Al掺杂ZnO(ZAO)薄膜性能的影响   总被引:1,自引:0,他引:1  
用射频磁控溅射技术,在纯氩气氛中不同溅射功率(120 W~210 W)下于玻璃衬底上制备了Al掺杂ZnO(ZAO)薄膜。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、光谱仪和四探针测试仪等对所制备的薄膜进行了晶体结构、光学和电学性能分析。结果表明,纯氩气氛中不同溅射功率下玻璃衬底上原位沉积的ZAO薄膜具有明显的c轴择优取向性,它没有改变ZnO的六角纤锌矿结构;ZAO薄膜的可见光区平均透光率不强烈依赖于溅射功率,为75%左右;原位沉积ZAO薄膜的电阻率达到102Ω.cm数量级范围,随溅射功率由120 W增大到210 W时,薄膜电阻率从132.67Ω.cm降低到21.08Ω.cm。  相似文献   

6.
室温下在玻璃基片上用射频磁控溅射法制备了不同厚度的ZnOAl(AZO)缓冲层,并在该同质缓冲层上溅射生长了AZO薄膜.用XRD测试了薄膜结构,用四探针法测量了薄膜方块电阻,用紫外-可见光谱仪测试了薄膜透过率,用双光束红外分光光度计测试了薄膜在中红外范围内的红外反射率.并比较并分析了引入同质缓冲层前后薄膜结构与性能的变化.结果表明,与没有缓冲层的样品相比较,适当厚度的同质缓冲层能降低AZO薄膜中的残余应力,使薄膜晶粒尺寸变大,降低AZO薄膜的方块电阻,使薄膜的紫外截止边发生蓝移,增加薄膜的红外反射率,并不明显影响薄膜的可见光透过率.  相似文献   

7.
采用射频磁控溅射技术制备了高度择优取向的Al掺杂ZnO(ZAO)薄膜,并对所制备的薄膜在纯氩气氛中进行了400℃、1h和2h的退火处理,将前者再于空气中相同温度下退火1h.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、光谱仪和四探针测试仪等对退火前后薄膜进行了表征和光学、电学性能研究.研究表明,退火处理对ZAO薄膜的晶体、光学和电学性能有影响.原位沉积的薄膜电阻率为2.59Ω·cm,可见光区透过率约70%.400℃纯Ar气氛中退火1h后,ZAO薄膜的平均晶粒有所长大,薄膜内应力有所减小;薄膜可见光区平均透过率从70%提高到将近80%;薄膜的电阻率变化不明显,从2.59Ω·cm降低到1.37Ω·cm.400℃纯Ar气氛中退火2h后,薄膜的可见光区透过率和电阻率分别为75%和14.7Ω·cm.400℃纯氩气氛中退火1h再经过空气中退火1h后,薄膜的可见光区透过率和电阻率分别为80%左右和0.69Ω·cm.  相似文献   

8.
能量过滤磁控溅射低温沉积ITO 膜及其光电性能研究   总被引:1,自引:1,他引:0  
利用能量过滤磁控溅射技术,于低温条件下,在玻璃衬底上制备ITO薄膜,研究了过滤电极金属网栅目数、溅射功率、衬底温度对ITO薄膜光电性能的影响。结果表明:在网栅目数为60目、衬底温度为81℃、溅射功率为165W的条件下,所得ITO薄膜的电阻率为4.9×10-4Ω.cm,可见光区平均透过率达到87%。  相似文献   

9.
韩丽 《表面技术》2012,(6):65-67
采用直流磁控溅射法,在玻璃基板上制备了用于显示器视窗保护玻璃的半透明镍膜,测定了不同溅射条件下所得镍膜的表面粗糙度、透过率及厚度,讨论了溅射气压、溅射功率、行车速度等对薄膜性能的影响。结果表明,薄膜的表面粗糙度随溅射功率的增加而增大,控制溅射气压、溅射功率和行车速度为一定值,可以得到透过率为50%的半透镍膜。  相似文献   

10.
采用Zn靶和ZnO(掺2%Al2O3(质量分数))陶瓷靶在玻璃衬底上共溅射沉积Al掺杂ZnO薄膜,即ZnO:Al透明导电薄膜,研究Zn靶溅射功率(0~90 W)和衬底温度(室温、100℃和200℃)对薄膜结构、形貌、光学和电学性能的影响。结果表明:按双靶共溅射工艺制备的ZnO:Al薄膜的晶体结构均为六角纤锌矿结构,且随着Zn靶溅射功率的增加,薄膜的结晶质量呈现出先改善后变差的规律,薄膜中的载流子浓度逐渐升高,电阻率逐渐降低,而薄膜的光学性能受其影响不大;随着衬底温度的升高,薄膜的结晶性能得到改善,薄膜的可见光透过率增强,电阻率降低。  相似文献   

11.
以纯度为99.99%氧化锌铝(w(Zn O)=98.00wt%,w(Al_2O_3)=2.00wt%)陶瓷靶为原料,利用直流磁控溅射法在普通白玻璃衬底上制备铝掺杂氧化锌(AZO)薄膜。利用X射线衍射仪(XRD)、扫描电镜(SEM)、四点探针测试仪和紫外可见光分光光度计等对薄膜的形貌、结构及光电性能进行分析。结果表明:薄膜具有c轴择优取向。随沉积温度升高,薄膜的结晶度先提高后下降,晶粒尺寸逐渐减小。当沉积温度为200℃时,可获得晶粒尺寸为18.30 nm、电阻率为4.1×10~(-3)Ω·cm、透过率为93.80%的AZO透明导电薄膜。  相似文献   

12.
通过RF磁控溅射技术制备不同溅射气压下的ITO薄膜,对其电阻率、光学透过率、XRD图、AFM图和划擦行为进行了研究。薄膜和基板的附着力通过划擦测试进行表征,重点研究了薄膜划擦测试的不同阶段的特征。研究表明随着Ar溅射气压的下降,薄膜附着力下降。而且,ITO薄膜的表面形貌和电阻率强烈的依赖于Ar气压。低温沉积ITO薄膜均为非晶态,在溅射气压0.8 Pa时得到电阻率(1.25×10~(-3)Ω·cm)和高可见光透过率薄膜(90%)。研究结果表明该薄膜光学禁带约为3.85 eV,电阻率主要受载流子浓度控制,受溅射气压的变化影响有限。  相似文献   

13.
室温下采用射频(RF)反应磁控溅射技术在玻璃衬底上沉积具有(002)择优取向的透明导电Al掺杂ZnO(AZO)薄膜。XRD结果表明,制备的AZO薄膜为多晶,具有c轴择优取向。退火处理能提高其结晶度。在Al靶射频功率为40W,ZnO靶射频功率为250W,氩气流量为15mL/min的条件下,获得200nm厚的薄膜电阻率约3.8×10-3?·cm,在可见光范围内有很好的光透过率。  相似文献   

14.
用射频磁控溅射技术制备了高度择优取向的Al掺杂ZnO(ZAO)薄膜,并对薄膜在纯氩气中进行了400~600℃的退火处理.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、光谱仪和四探针测试仪等对退火前后薄膜进行了表征和光学、电学性能研究.研究表明,纯氩气中退火处理对ZAO薄膜的晶体、光学和电学性能有影响.原位沉积的薄膜电阻率2.59Ωcm,可见光区透过率约70%.500℃纯Ar气氛中退火1h后,ZAO薄膜的平均晶粒有所长大,薄膜内应力达到最小,接近于松弛状态;薄膜可见光区平均透过率从70%提高到80%左右;而薄膜的电阻率变化不明显,从2.59Ωcm降低到1.13Ωcm.  相似文献   

15.
室温下用直流磁控溅射法在PET塑料基板上制备氧化锌薄膜及掺铝氧化锌AZO(ZnO∶Al)薄膜.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、四点探针仪、霍尔效应仪及光谱仪等装置,考察了氧分率、溅射功率及铝掺杂量等工艺参数对薄膜微观结构和光电性能的影响.结果表明:AZO薄膜晶体结构为纯ZnO的六角纤锌矿结构.随着Al掺杂量增多,AZO薄膜导电性增加,透光率下降.在氧分率为8.2%,ZnO(40 nm)/Al(6 nm)三层膜条件下,得到电阻率为5.66×10-2Ω·cm,可见光范围内透光率约为80%的AZO薄膜.  相似文献   

16.
通过RF磁控溅射技术制备不同溅射气压下的ITO薄膜,对其电阻率、光学透过率、XRD图、AFM图和划擦行为进行了研究。薄膜和基板的附着力通过划擦测试进行表征,重点研究了薄膜划擦测试的不同阶段的特征。研究表明随着Ar溅射气压的下降,薄膜附着力下降。而且,ITO薄膜的表面形貌和电阻率强烈的依赖于Ar气压。低温沉积ITO薄膜均为非晶态,在溅射气压0.8 Pa时得到电阻率(1.25×10-3 Ω×cm)和高可见光透过率薄膜(90%)。研究结果表明该薄膜光学禁带约为3.85 eV,电阻率主要受载流子浓度控制,受溅射气压的变化影响有限。  相似文献   

17.
研究了衬底温度、溅射气压对磁控溅射沉积ZnO缓冲层薄膜的微观结构、表面形貌和光学性能的影响。结果表明,衬底温度、溅射气压对ZnO缓冲层薄膜表面形貌、晶粒尺寸、禁带宽度和光学透过率等有较大影响。综合分析得出最佳的制备ZnO缓冲层薄膜的工艺为250℃、0.6 Pa。在此工艺下制备的ZnO缓冲层薄膜具有很好的ZnO(002)面c轴择优取向,结构致密、尺寸均匀,禁带宽度为3.24 eV,可见光平均透过率为86.93%,符合作CIGS太阳能电池缓冲层的要求。  相似文献   

18.
以自制氧化锡锑(ATO)陶瓷靶材为原料,采用磁控溅射法于200℃、不同氧气流量(0~15 cm3/min)下,同时在石英玻璃基片和铜锌锡硫(CZTS)电池原件上制备了ATO薄膜电极。采用XRD、FESEM以及霍尔效应测试等手段研究了氧气流量对薄膜微观结构和光电性能的影响;采用太阳能效率测试仪测试了CZTS薄膜电池的光电转换效率。结果表明:氧气流量对薄膜的结晶度具有显著影响,从而影响其平均可见光透过率和电阻率。当氧气流量从0 cm~3/min上升至5 cm~3/min时,薄膜结晶性提高使得平均可见光透过率下降;同时,薄膜中Sb~(3+)向Sb~(5+)转变使得载流子浓度上升,电阻率下降。当氧气流量从5 cm~3/min上升至15 cm3/min时,薄膜结晶度降低,平均可见光透过率上升;而氧空位的急剧减少使得载流子浓度降低,电阻率上升。本实验所制备的ATO薄膜在氧气流量为5 cm3/min时具有最低电阻率6.84×10~(-3)?·cm,平均可见光透过率85.49%,同一时间在CZTS电池上制备的ATO薄膜电极与基底结合牢固,且该CZTS电池具有最佳光电转换效率1.47%。  相似文献   

19.
采用直流反应磁控溅射法在玻璃片上制备了TiN薄膜,研究不同制备工艺条件与薄膜性能之间的关系。用紫外-可见光分光光度计测试了不同沉积时间和N2流量条件下TiN薄膜透光率;用X射线衍射仪分析了不同N2流量和溅射功率条件下TiN薄膜结构;用扫描电镜(SEM)观察了TiN薄膜的表面腐蚀形貌,用恒电位仪对TiN薄膜的耐腐蚀性进行了分析。结果表明:当沉积时间为2min,N2流量为15mL/min时,在可见光区有较高的透光率,在近红外区的透光率很低;当N2流量为15mL/min,溅射功率为4kW时,TiN薄膜的结晶最致密;当溅射功率为4kW时,TiN薄膜具有较好的耐腐蚀性。  相似文献   

20.
目的了解靶材成分对磁控溅射PTFE薄膜性能的影响,以提升PTFE薄膜疏水性能。方法采用射频磁控溅射技术,在玻璃基片上一步制备了透明超疏水聚四氟乙烯薄膜,并研究了不同PTFE靶材对薄膜的影响。利用X射线光电子能谱仪(XPS)、接触角测试仪(Drop Meter)、紫外-可见分光光度计(UV-Vis)分别对靶材和薄膜的性能进行研究。结果两靶材的氟碳官能团含量有明显差异,且靶材1含有CF2O,靶材2中不含。靶材的成分影响了PTFE的溅射率,靶材1的溅射率为靶材2的2倍。相同溅射时间下,靶材不同的薄膜厚度不同,从而表现出不同的静态水接触角。薄膜的疏水性能与薄膜厚度呈现指数关系,最终稳定在170°水接触角平台。同时,溅射过程中,F离子刻蚀到玻璃基底而引入了Na F,但薄膜中Na F和氟碳基团的含量与靶材成分相关。薄膜中Na F的存在,提升了薄膜的F/C比,降低了薄膜表面能,提升了其疏水性能,但降低了薄膜的可见光透过率。结论一步制备透明超疏水聚四氟乙烯薄膜的技术具有广泛应用前景,了解靶材成分对薄膜性能的影响具有重要指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号