首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
采用PLINT微动腐蚀试验机,位移幅值为100~200μm,法向载荷为20~80 N,频率为2 Hz,循环次数为10000次,在乙醇胺(ETA)溶液中对Inconel690合金进行了切向微动腐蚀试验。结果表明:微动腐蚀与磨损呈"负交互作用",其原因是表面膜和腐蚀产物组成的第三体层参与微动磨损过程,改变了摩擦接触界面状态;微动使自腐蚀电位负移,位移幅值增加,引起腐蚀速率增大;Inconel690合金在ETA溶液中的微动磨损机制主要表现为磨粒磨损和剥层的共同作用。  相似文献   

2.
李萧  辛龙 《金属热处理》2023,48(1):12-17
为预防及减缓微动损伤对核反应堆蒸汽发生器传热管的危害,深入研究了晶粒尺寸对Inconel 690合金微动磨损行为的影响。采用微动磨损试验方法对Inconel 690合金的微动磨损特性展开研究,并利用光学显微镜(OM)、维氏硬度计、扫描电镜(SEM)、能谱仪(EDS)和激光共焦扫描显微镜(LSCM)等对不同固溶温度下材料的微观组织结构、硬度和磨痕特征进行观察和分析。结果表明,随着固溶温度的升高,Inconel 690合金晶粒尺寸增大,硬度降低;在完全滑移区,摩擦因数随晶粒度和硬度的变化很小,其值均约为0.48;当Inconel 690合金平均晶粒尺寸为112μm,且SS304与Inconel 690合金硬度比为260∶176.4时,Inconel 690合金磨损体积最少;不同晶粒度和硬度下Inconel 690合金的微动磨损机制主要为剥层磨损、磨粒磨损和粘着磨损。  相似文献   

3.
目的 研究典型的加载参数对复杂交变载荷作用下微动运行状态的影响。方法 利用ABAQUS建立了二维(平面应变)有限元模型,模拟微动垫和试件在循环法向载荷和轴向载荷下的接触状态,对不同加载条件下的微动运行状态进行分析,提出一种Q-P曲线的分析方法,再结合双轴微动疲劳试验验证其适用性。结果 比例加载条件下,在微动垫夹具刚度较小时的Ft-D的曲线为直线,而微动垫夹具刚度较大时的Ft-D曲线表现为不规则的四边形,这些条件下的Q-P曲线均为线性函数,并且随着微动垫夹具刚度增加,曲线的斜率增大;非比例加载条件下,Ft-D曲线的形状不再是四边形,形状较为复杂,此时Q-P曲线为椭圆函数。随着微动垫夹具刚度的增大,椭圆的短轴增加。当相位差不为90°时,椭圆两半轴与坐标系不平行,椭圆发生旋转;特别地,相位差为90°时,Q-P曲线为标准椭圆函数。当Q-P曲线与直线QμP相交时,由于滑移的产生,椭圆曲线将发生变化。结论 在复杂交变载荷作用下, 不同的加载参数(法向载荷、轴向载荷、微动垫夹具刚度等)或其相互间的组合会影响Q-P曲线的大小和位置,提出的Q-P曲线方法可以为分析复杂交变载荷条件下的运行状态研究提供手段,为进一步地讨论微动疲劳或微动磨损行为提供指导。  相似文献   

4.
在卧式高温微动磨损试验机(PLINT TE77)上,采取线接触方式,研究690合金传热管/405不锈钢抗振条在干态不同温度下的切向微动磨损特性。在试验参数为法向载荷40 N、位移幅值100μ、频率5 Hz和循环次数1次的条件下,分别在25、90、200和285℃这4种不同温度下进行切向微动磨损试验。结果表明:微动工况均处于滑移区,90℃时稳态摩擦因数最高;当温度升高到200和285℃时,摩擦因数经过下降期后出现一个更加明显的下降阶段,这与界面的高温氧化有关。磨损机制是磨粒磨损、氧化磨损和剥层,磨痕表面在低温(25和90℃时的氧化程度比高温(200和285℃时的严重。90℃时的磨损量比其他温度时的都高,这可能与界面水蒸气蒸发和表面摩擦氧化有关。  相似文献   

5.
Incoloy800合金的高温微动磨损特性   总被引:1,自引:0,他引:1  
采用PLINT高温微动磨损试验机,研究核电用管材Incoloy800合金的高温微动磨损机制和动力学特性。Incoloy800合金圆管试件与0Cr18Ni9不锈钢配副件圆柱体在水平面上垂直交叉接触,控制法向载荷为80N、位移幅值为2~20μm、循环次数为3×104次,在不同温度(25℃、300℃和400℃)下进行微动磨损试验。结果表明:当载荷、温度一定时,随着位移幅值的增大,Incoloy800合金的微动运行经历从部分滑移区向混合区和滑移区规律性的转变。温度升高并未对微动运行的区域特性以及部分滑移区的稳态摩擦系数产生显著影响,但在混合区和滑移区,稳态摩擦系数随温度的升高而明显降低。Incoloy800合金的高温微动磨损机制主要表现为摩擦氧化、磨粒磨损与剥层的共同作用。  相似文献   

6.
研究了1050~1200℃固溶处理对Inconel 690合金微观组织的影响。结果表明:固溶温度对合金微观组织的影响比较大,当固溶温度为1050℃时,晶粒由初始约10μm长大到19μm,当温度超过1125℃时,晶粒长大速度加快,当温度达到1150℃时,晶粒迅速长大到66.1μm。合金中的富铬碳化物含量随固溶温度的升高而逐渐减少,在1125~1150℃进行固溶处理时,碳化物全部溶解。由公式计算,结合扫描电镜结果,确定出合金中富铬碳化物的完全溶解温度为1136℃左右。  相似文献   

7.
介绍了Inconel 690合金的性质及其应用,重点阐述了表面处理方法,并分析了各种制备技术的优缺点。等离子体渗氮具有其它工艺无法比拟的优势,且经它处理后Inconel 690合金表面耐蚀性、耐磨性明显提高。  相似文献   

8.
采用新型扭动微动试验机在法向载荷为50、80和110 N及角位移幅值为0.3°~10°的条件下进行TA2和TC4合金与ZrO2对磨球的扭动微动试验。在摩擦动力学行为研究的基础上,结合磨痕形貌微观分析,考察TA2和TC4合金的扭动微动磨损特性。结果表明:可用摩擦扭矩—角位移曲线和摩擦扭矩时变曲线表征合金的扭动微动行为,获得了TA2和TC4合金的扭动微动运行工况微动图,TA2合金的混合区较TC4合金的宽。摩擦扭矩随法向载荷和角位移幅值的增加而增加,在相同试验条件下,TA2合金的摩擦扭矩始终大于TC4合金的。在部分滑移区,损伤轻微;在混合区和滑移区,损伤加剧,扭动微动摩擦磨损机制主要为磨粒磨损、氧化磨损和剥落。  相似文献   

9.
电致塑性拔丝是指在普通拔丝加工过程中引入高能电脉冲的新型加工方法。电致塑性拉拔的Inconel690合金丝在拔制过程中与模具摩擦有明显降低,拔制力大幅度下降,材料的表面质量及塑性得到明显提高。  相似文献   

10.
为获得中国生产蒸汽发生器传热管Inconel 690合金的热物理性能数据,对690合金的热膨胀系数、比热容、热扩散率、热导率、弹性模量和泊松比进行了测定和分析。结果表明:690合金在100~350℃的平均热膨胀系数为11.97×10-6/℃;在350℃以下,690合金的热膨胀系数、比热容、热扩散率和热导率随温度的升高而增加,但其弹性模量和泊松比均随温度升高而减小。用最小二乘法建立了690合金在350℃内的热膨胀系数、热扩散率、热导率、弹性模量和泊松比与温度之间的函数关系。  相似文献   

11.
利用原位表面增强型拉曼光谱 (SERS) 研究了Inconel 600合金和Inconel 690合金在高温高压水环境中生成的氧化膜特征。结果表明,Inconel 600合金氧化膜的内层为薄且连续的Cr2O3,外层为非连续分布的FeCr2O4/NiFe2O4晶粒。Inconel 690合金腐蚀氧化膜由单一连续的Cr2O3构成。从两个方面分析了本文SERS结果与他人研究成果之间的差异。一是合金在腐蚀的早期阶段形成Cr2O3内层,随着时间增加,转变成热力学稳定的富铬尖晶石;二是由不锈钢材料制成的高压釜和回路管道,溶液中含有大量的Fe2+和Ni2+,导致氧化膜中尖晶石相的生成。提出了合金氧化膜与腐蚀时间以及高压釜 (含管道回路) 材质都存在一定的关联性。  相似文献   

12.
利用在标准Sargent镀Cr电解液中添加Na_2MoO_4的方法,制备了Mo含量小于10%(重量比)的Cr-Mo合金镀层,讨论了镀液组成及工艺参数对镀层的成分、电流效率及其显微硬度的影响.并利用电子探针(EPMA)、X-射结衍射仪(XRD)、扫描电镜(SEM)等,对Cr-Mo合金镀层的成分、微观结构及表面形貌进行了分析.作者还在SRV试验机上测试了Cr-Mo合金镀层的抗微动磨损性能.  相似文献   

13.
利用Gleeble-3800热模拟实验机,在变形温度为1000~1200℃、应变速率为1~80 s-1条件下进行恒温、恒应变速率的热压缩实验,测试了高温合金Inconel 690(IN690)的真应力—应变曲线。采用加工硬化率方法,研究了Inconel 690高温合金的动态再结晶临界条件,并引入Zener-Hollomn参数建立了材料的临界应变、临界应力、峰值应变和稳态应变的模型。采用加工硬化率方法确定的动态再结晶发生的临界应变值与Sellars提出的经验模型相吻合。  相似文献   

14.
由于试验装置的限制,在模拟工程服役环境的高温高压水环境下对三代核电用690合金管/405不锈钢抗振条(AVB)的高频微动磨损研究存在不足,影响了对核电厂蒸汽发生器传热管结构完整性评价的有效性。在模拟压水堆核电厂二回路高温高压水环境下,以690合金传热管为研究对象,开展高频切向微动磨损试验。试验研究不同位移幅值(D=20、30、40、80、120μm)对690合金管微动磨损行为的影响。试验结束后,借助扫描电子显微镜、能谱仪和三维形貌仪对磨损区域进行形貌表征、能谱分析和磨损体积计算。试验结果表明:随着位移幅值的增加,磨损接触面积增大,磨损深度和磨损体积均增加,磨损加剧。当位移幅值较小时(D=20、30、40μm),磨屑不易排出接触面,多黏着在磨痕中心,磨损机制主要是黏着磨损;当位移幅值增加至80、120μm时,磨屑分布均匀,磨损机制向剥层磨损转变。随着磨损机制的转变,磨损率呈现先增加后降低的趋势,在D=80μm时,磨损率最大。通过更符合工程实际的高温高压水环境试验,对比了不同位移幅值下的传热管微动磨损性能,给出了磨损率随位移幅值变化的趋势,初步阐明了磨损机制,有利于核电装备的摩擦学性能提升,对核电厂690传热管的结构完整性评价有较好的指导作用。  相似文献   

15.
米雪  唐攀  沈平川  郑斌  陈果  朱旻昊 《表面技术》2020,49(11):191-197
目的 通过690合金管/405不锈钢块(线接触)的切向微动试验,探究690合金管在不同法向载荷作用下的切向微动磨损机制和损伤演变规律。方法 采用自制的多功能复合微动磨损试验机,研究法向载荷(10、20、40 N)对690合金传热管/405不锈钢抗振条的切向微动磨损性能的影响。通过分析摩擦系数和耗散能,获得试验过程中的动力学信息,再通过光学显微镜、扫描电镜对磨痕进行微观分析,获得其磨损机制以及损伤演变规律。结果 当位移幅值为100、200 μm,法向载荷为10、20、40 N时,690合金管/405不锈钢块的微动运行状态处于完全滑移区。随着法向载荷的增加,摩擦耗散能和摩擦力增大,690合金管的损伤加剧,产生的磨屑增加,磨痕表面的剥落坑被磨屑覆盖而减少,摩擦系数呈下降趋势。沿微动方向,690合金表面的磨损区域内O、Fe、Ni和Cr的含量呈锯齿变化;沿接触方向,690合金管的磨损深度也呈现锯齿状,这都是690合金管和405不锈钢块均为非理想平面所致。结论 总体而言,随着法向载荷的增加,690合金管和405不锈钢块的磨损体积增加,690合金管主要的磨损机制为剥层和磨粒磨损。  相似文献   

16.
在往复冲击载荷下对TiNiNb合金的冲击磨损性能进行研究。结果表明:当单位面积冲击能量为1.61J/cm2时,TiNiNb合金表现出通常的耐磨行为,磨损率始终维持稳定;但当单位面积冲击能量上升到2.42 J/cm2且冲击进行到30万次后,磨损率曲线发生转折,转折后的磨损率仅为1.61 J/cm2冲击时的1/2.1。经X射线衍射分析和扫描电镜观察发现,磨损率下降的主要原因是高能冲击30万次后,表层组织中出现大量的非晶,导致通常的磨损机制在很大程度上受到抑制,使磨损率急剧下降,并因此使得高能量冲击下的磨损量最终也低于低能量冲击下的磨损量。  相似文献   

17.
采用背散射电子衍射分析技术(EBSD)和慢应变速率拉伸实验方法研究不同轧制道次的Inconel 690合金微观组织和应力腐蚀开裂(SCC)行为。结果表明,三道次轧制的690合金样品的晶粒更大,低重合点阵晶界所占比例更高,织构程度更弱。三道次轧制的690合金在高温高压纯水中的慢应变速率拉伸试验表现出更好的耐应力腐蚀性能。三道次轧制的690合金可以形成更加均匀的组织,提高低重合点阵晶界所占比例,增加其抗应力腐蚀能力。  相似文献   

18.
研究Inconel690合金在不同的热处理条件下晶粒大小和晶界析出物.结果表明:当固溶处理温度低于1100℃时,晶粒尺寸变化不大,当温度超过1150℃时,晶粒开始显著长大,建议固溶处理应在1100℃以下.Incone1690合金经固溶处理和特殊热处理(TT处理)后,晶界的主要析出物和沉淀物为Ti(C,N)和M23C6,析出物尺寸随热处理温度的升高而增大,分布的形态主要呈断续和半连续状.  相似文献   

19.
采用X射线衍射分析(XRD)、扫描电子显微镜分析(SEM)、能谱分析(EDS)等手段,对Inconel 625合金于750℃条件下在涂覆了摩尔比为8∶2的Na_2SO_4与K_2SO_4混合盐膜,并腐蚀60h后的腐蚀行为进行分析,为相关的镍铬合金抗硫酸盐腐蚀的研究提供理论依据。Inconel 625合金在腐蚀初期质量增加明显,之后腐蚀速度逐渐减缓,其表面生成的Cr_2O_3氧化层并不连续,使得O和S得以侵入基体,与基体发生反应,因此腐蚀情况较严重。  相似文献   

20.
完善钛合金微动摩擦磨损特性数据,以磨损颗粒在不同位移幅值下于界面间的运动分布为手段,研究不同运动分布下的微动行为和损伤机制。结果表明:位移幅值显著影响着磨损颗粒的运动分布。小位移下中心粘着撕裂形成的片状脱层沿垂直于微动的方向堆积成"脊";中等位移下磨屑颗粒平铺于接触表面;较大位移下团簇状磨屑沿平行于微动的方向重新聚集成水平"脊"。磨屑在接触界面不同的运动分布导致磨损机制由粘着磨损,过渡到磨粒伴随轻微粘着,最终以磨粒伴随氧化磨损为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号