首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The aim of the present study was to establish a radioligand binding assay to selectively label the native 5-HT7 receptor expressed in rat brain. In rat whole brain (minus cerebellum and striatum) homogenate, (+/-)-pindolol (10 microM)-insensitive [3H]5-CT ([3H]5-carboxamidotryptamine; 0.5 nM) specific binding (defined by 5-HT, 10 microM) displayed a pharmacological profile similar to the recombinant 5-HT7 receptor, although the Hill coefficients for competition curves generated by methiothepin, ritanserin, sumatriptan, clozapine and pimozide were significantly less than unity. In homogenates of rat hypothalamus, (+/-)-pindolol (10 microM)-insensitive [3H]5-CT recognition sites also resembled, pharmacologically, the 5-HT7 receptor, although pimozide still generated Hill coefficients significantly less than unity. Subsequent studies were performed in the additional presence of WAY100635 (100 nM) to prevent [3H]5-CT binding to residual, possibly, 5-HT1A sites. Competition for this [3H]5-CT binding indicated the labelling in whole rat brain homogenate of a homogenous population of sites with the pharmacological profile of the 5-HT7 receptor. Saturation studies also indicated that (+/-)-pindolol (10 microM)/WAY 100635 (100 nM)-insensitive [3H]5-CT binding to homogenates of whole rat brain was saturable and to an apparently homogenous population of sites which were labelled with nanomolar affinity (Bmax=33.2+/-0.7 fmol mg(-1) protein, pKd=8.78+/-0.05, mean+/-S.E.M., n=3). The development of this 5-HT7 receptor binding assay will aid investigation of the rat native 5-HT7 receptor.  相似文献   

2.
We investigated age-related changes in excitatory amino acid transport sites and FK506 binding protein (FKBP) in 3-week-, and 6-, 12-, 18- and 24-month-old Fischer 344 rat brains using receptor autoradiography. Sodium-dependent D-[3H]aspartate and [3H]FK506 were used to label excitatory amino acid transport sites and immunophilin (FKBP), respectively. In immature rats (3-week-old), sodium-dependent D-[3H]aspartate binding was lower in the frontal cortex, parietal cortex, striatum, nucleus accumbens, whole hippocampus, thalamus and cerebellum as compared to adult animals (6-month-old), whereas [3H]FK506 binding was significantly lower in only the hippocampus, thalamus and cerebellum. 3[H]FK506 binding exhibited no significant change in the brain regions examined during aging. However, sodium-dependent D-[3H]aspartate binding showed a conspicuous reduction in the substantia nigra in 18-month-old rats. Thereafter, a significant reduction in sodium-dependent D-[3H]aspartate binding was found in the thalamus, substantia nigra and cerebellum in 24-month-old rats. Other regions also showed about 10-25% reduction in sodium-dependent D-[3H]aspartate binding. The results indicate that excitatory amino acid transport sites are more susceptible to aging process than immunophilin. Further, our findings demonstrate the conspicuous differences in the developmental pattern between excitatory amino acid transport sites and immunophilin in immature rat brain.  相似文献   

3.
SK&F 96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenylethyl]-1H-imi dazole hydrochloride) stimulated the accumulation of [3H]inositol monophosphates ([3H]IP1) in human U373 MG astrocytoma cells prelabelled with [3H]inositol (EC50 15 +/- 1 microM, Hill coefficient 3.8 +/- 0.4). SK&F 96365-induced accumulation of [3H]IP1 increased linearly with time, but there was no initial rapid formation of [3H]IP3. SK&F 96365 also stimulated [3H]IP1 accumulation in human HeLa cells, but only to a small extent in slices of rat cerebral cortex and guinea-pig cerebellum. SK&F 96365-induced accumulation of [3H]IP1 in U373 MG cells increased as extracellular Ca2+ was increased from nominally zero to 4 mM, but there was no evidence that SK&F 96365 induced any marked entry of Ca2+ into cells; only an inhibition of store-refilling-induced Ca2+ entry was apparent. Further, the response to SK&F 96365 was additive with that to the Ca2+ ionophore ionomycin. Depolarization of the cells with raised K+ produced only a small stimulation of phosphoinositide hydrolysis. SK&F 96365 caused the release of Ca2+ from intracellular stores in U373 MG cells (EC50 26 +/- 14 microM), but thapsigargin induced only a small accumulation of [3H]IP1. Miconazole, another N-substituted imidazole, also stimulated [3H]IP1 accumulation in U373 cells.  相似文献   

4.
Pharmacological characterization of [3H]benzodiazepine binding to membrane preparations of adult rat hippocampus and neonatal rat brain have demonstrated, in addition to the omega 1 and omega 2 populations of central omega benzodiazepine binding sites associated with GABAA receptors, the existence of binding sites with microM affinity for the imidazopyridines zolpidem and alpidem. In the present study we have investigated their comparative autoradiographic distribution using [3H]flumazenil as a ligand. In the neonatal rat CNS, the imidazopyridine derivatives zolpidem and alpidem were found to discriminate two [3H]flumazenil binding site populations with an IC50 value ratio of more than 200-fold. In the different regions investigated (spinal cord, striatum, neocortex and inferior colliculus) the low affinity component had IC50 values of 20-40 microM (zolpidem) and 5-15 microM (alpidem) and accounted for ca. 50% of the total binding site population. In the adult rat, these imidazopyridine derivatives displayed a greater displacing potency in the cerebellum (IC50 = 6 and 36 nM, respectively) than in the hippocampus (IC50 = 37 and 403 nM, respectively). In the cerebellum, [3H]flumazenil binding was fully displaced by 1 microM of either compound and Hill coefficients of displacement curves were close to unity. In the hippocampus, 25% of [3H]flumazenil binding were resistant to 3 microM zolpidem or 1 microM alpidem, but were displaced by 100 microM of either compound. CL 218,872 also displayed a greater displacing potency in the cerebellum (IC50 = 83 nM) than in the hippocampus (IC50 = 711 nM) but [3H]flumazenil binding in the hippocampus was fully displaced by 10 microM of this compound. In adult rat hippocampus, zolpidem and alpidem were found to discriminate between three central omega site subtypes which display high (IC50 = 31 and 6.1 nM, for these imidazopyridine derivatives. In contrast, CL 218,872 discriminated between omega 1 and omega 2 sites but not between two omega 2 receptor subpopulations. omega 1 sites were mainly localized in layer IV of the sensorimotor cortex, cerebellum, substantia nigra, olfactory bulb and inferior colliculus. omega 2I sites were present in the cortical mantle (with higher levels in the cingulate and olfactory than in the sensorimotor cortex) and in subcortical (hippocampus, hypothalamus and nucleus accumbens) limbic structures. In the hippocampus, hypothalamus, spinal cord and nucleus accumbens, omega 2L sites accounted for more than 25% of the specific [3H]flumazenil binding; the density of these sites was minor in the cortex and in most pyramidal and extrapyramidal system structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The tritiated derivative of the potent 5-HT1A receptor agonist S-14506 ?1[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxynaphtyl)pipera zine? was tested for its capacity to selectively label the serotonin 5-HT1A receptors both in vitro in the rat and the mouse brain, and in vivo in the mouse. In vitro studies showed that the pharmacological profile and the distribution of [3H]S-14506 specific binding sites (Kd = 0.15 nM) in different brain regions matched perfectly those of the prototypical 5-HT1A receptor ligand [3H]8-OH-DPAT. However, in the three regions examined (hippocampus, septum, cerebral cortex), the density of [3H]S-14506 specific binding sites was significantly higher (+66-90%) than that found with [3H]8-OH-DPAT. Whereas the specific binding of [3H]8-OH-DPAT was markedly reduced by GTP and Gpp(NH)p and increased by Mn2+, that of [3H]S-14506 was essentially unaffected by these compounds. In addition, the alkylating agent N-ethylmaleimide was much less potent to inhibit the specific binding of [3H]S-14506 than that of [3H]8-OH-DPAT. Measurement of in vivo accumulation of tritium one hour after i.v. injection of [3H]S-14506 to mice revealed marked regional differences, with about 2.5 times more radioactivity in the hippocampus than in the cerebellum. Pretreatment with 5-HT1A receptor ligands prevented tritium accumulation in the hippocampus but not in the cerebellum. Autoradiograms from brain sections of injected mice confirmed the specific in vivo labeling of 5-HT1A receptors by [3H]S-14506, therefore suggesting further developments with derivatives of this molecule for positron emission tomography in vivo in man.  相似文献   

6.
1. In vitro receptor autoradiography using [3H]-L-2-amino-4-phosphonobutyrate ([3H]-L-AP4) binding to sections of rat brain has been characterized and shown to most likely represent labelling of group III metabotropic glutamate receptors. 2. Specific [3H]-L-AP4 binding to rat brain sections was observed at high densities in the molecular layer of the cerebellar cortex and the outer layer of the superior colliculus. Moderate levels were observed throughout the cerebral cortex, in the molecular layer of the hippocampal dentate gyrus, in thalamus, striatum, substantia nigra and in the medial geniculate nucleus. Low levels of [3H]-L-AP4 binding were found in other regions of the hippocampal formation, in the entorhinal cortex and the granule cell layer of cerebellum. 3. Inhibitors of sodium- or calcium/chloride-dependent glutamate uptake did not displace [3H]-L-AP4 binding to rat brain sections indicating that the observed binding does not represent [3H]-L-AP4 uptake via these carriers. Furthermore, in contrast to [3H]-L-AP4 uptake into cerebellar membranes, [3H]-L-AP4 binding to brain sections was sensitive to guanosine-5'-O-(3-thio)trisphosphate-gamma-S. 4. In the molecular layer of the cerebellar cortex, [3H]-L-AP4 binding showed a maximal binding density (Bmax) of 0.52+/-0.06 pmol mg(-1) tissue and an affinity (Kd) of 346 nM. The rank order of affinity for displacement of [3H]-L-AP4 binding to rat brain sections was: L-AP4 > L-serine-O-phosphate > glutamate > (L)-2-aminomethyl-4-phosphonobutanoate > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate which is in agreement with a group III metabotropic glutamate receptor pharmacology.  相似文献   

7.
The 5-hydroxytryptamine(HT)3 receptor subtype is present in the central nervous system (CNS) in low abundance, and few selective radiolabeled antagonists with high specific activity are available to study these sites. DAIZAC [desamino-3-iodo-(S)-zacopride; (S)-5-chloro-3-iodo-2-methoxy-N-(1-azobicyclo-[2.2. 2]oct-3-yl)benzamide] is a compound with high affinity and selectivity for the 5-HT3 receptor. Scatchard analysis of specific binding to NCB-20 cell membranes gave a Bmax of 340 +/- 58 fmol/mg protein and a KD of 0.14 +/- 0.03 nM, which is in agreement with the value previously reported in rat brain (KD = 0.15 nM). Nonspecific binding of [125I]DAIZAC in NCB-20 cells was <1% of total binding at the KD for DAIZAC compared with 17% in the rat brain preparation. Unlabeled DAIZAC (10 microM) showed minimal ability to displace binding of radiolabeled ligands selected for their affinities for other CNS receptor and uptake carrier binding sites. The discrimination ratio of DAIZAC for the 5-HT3 receptor over the M1 muscarinic binding site, the non-5-HT3 site at which it was most potent, was >2800. Serotonergic antagonists at every other known CNS serotonergic binding sites (3-30 microM) were ineffective in displacing [125I]DAIZAC binding in rat brain membranes. Similarly, antagonists (3-30 microM) for other nonserotonergic receptors and uptake sites were ineffective in displacing [125I]DAIZAC binding. Autoradiographic studies showed highest specific binding in area postrema and nucleus solitarius, with intermediate levels of binding in entorhinal cortex and hippocampus. DAIZAC inhibited 5-HT3 receptor-mediated inward cation current in NCB-20 cells with an IC50 of 0.24 nM. [125I]DAIZAC is a potent and highly selective ligand for in vitro studies of the 5-HT3 receptor.  相似文献   

8.
[(2S,2'R,3'R)-2-(2',3'-[3H]Dicarboxycyclopropyl)glycine ([3H]DCG IV) binding was characterized in vitro in rat brain cortex homogenates and rat brain sections. In cortex homogenates, the binding was saturable and the saturation isotherm indicated the presence of a single binding site with a K(D) value of 180 +/- 33 nM and a Bmax of 780 +/- 70 fmol/mg of protein. The nonspecific binding, measured using 100 microM LY354740, was <30%. NMDA, AMPA, kainate, L(-)-threo-3-hydroxyaspartic acid, and (S)-3,5-dihydroxyphenylglycine were all inactive in [3H]DCG IV binding up to 1 mM. However, several compounds inhibited [3H]DCG IV binding in a concentration-dependent manner with the following rank order of potency: LY341495 = LY354740 > DCG IV = (2S,1'S,2'S)-2-(2-carboxycyclopropyl)glycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (2S,1'S,2'S)-2-methyl-2-(2-carboxycyclopropyl)glycine > L-glutamate = ibotenate > quisqualate > (RS)-alpha-methyl-4-phosphonophenylglycine = L(+)-2-amino-3-phosphonopropionic acid > (S)-alpha-methyl-4-carboxyphenylglycine > (2S)-alpha-ethylglutamic acid > L(+)-2-amino-4-phosphonobutyric acid. N-Acetyl-L-aspartyl-L-glutamic acid inhibited the binding in a biphasic manner with an IC50 of 0.2 microM for the high-affinity component. The binding was also affected by GTPgammaS, reducing agents, and CdCl2. In parasagittal sections of rat brain, a high density of specific binding was observed in the accessory olfactory bulb, cortical regions (layers 1, 3, and 4 > 2, 5, and 6), caudate putamen, molecular layers of the hippocampus and dentate gyrus, subiculum, presubiculum, retrosplenial cortex, anteroventral thalamic nuclei, and cerebellar granular layer, reflecting its preferential (perhaps not exclusive) affinity for pre- and postsynaptic metabotropic glutamate mGlu2 receptors. Thus, the pharmacology, tissue distribution, and sensitivity to GTPgammaS show that [3H]DCG IV binding is probably to group II metabotropic glutamate receptors in rat brain.  相似文献   

9.
Many neurotransmitters and hormones in the nervous system transmit signals through receptors coupled to the poly-phosphoinositide (PI) signaling pathway. In this study, an in vivo protocol with [3H]inositol was used to examine the effect of chronic ethanol administration on inositol metabolism and poly-PI turnover in the cerebral cortex, hippocampus, and cerebellum of mouse brain. C57BL/6 mice were given a nutritionally complete liquid diet containing either ethanol (5%, w/v) or isocaloric sucrose for 2 months. Mice were injected intracerebrally with [3H]inositol; after 16 or 24 hr, they were injected intraperitoneally with lithium (8 mEq/kg body weight) to inhibit the inositol monophosphatase (IP1) activity. All mice were decapitated 4 hr after lithium injection. Labeled inositol phospholipids accounted for 16 to 23% of total labeled inositol in different regions of control mouse brain, and the percentages in the hippocampus were consistently higher than the cerebral cortex and cerebellum. In control mice, the percentages of labeled IP1 after a 4-hr lithium treatment were 11.5%, 9.9%, and 3.7% for cerebral cortex, hippocampus, and cerebellum, respectively. Chronic ethanol feeding resulted in a significant (p < 0.05) decrease in the percent of labeled IP1 and inositol phospholipids, and this effect was observed in the cerebral cortex and, to a lesser extent, hippocampus but not cerebellum. When ratios of labeled IP1 were expressed against labeled inositol phospholipids as an index of the poly-PI turnover activity, significant decreases in IP/lipid ratios were observed in the cerebral cortex, but not the hippocampus or cerebellum. Although mice killed 24 + 4 hr after the last ethanol feeding would have experienced an 8-hr period of ethanol withdrawal, compared with the 16 + 4-hr group, no differences in IP/lipid ratios were observed between the two time groups. These results illustrate regional differences in the effect of chronic ethanol on inositol metabolism in the brain, but no difference in poly-PI turnover in brain due to ethanol withdrawal.  相似文献   

10.
1. Binding of D,L-(E)-2-amino-4-[3H]-propyl-5-phosphono-3-pentenoic acid ([3H]-CGP 39653), a high affinity, selective antagonist at the glutamate site of the N-methyl-D-aspartate (NMDA) receptor, was investigated in rat brain by means of receptor binding and quantitative autoradiography techniques. 2. [3H]-CGP 39653 interacted with striatal and cerebellar membranes in a saturable manner and to a single binding site, with KD values of 15.5 nM and 10.0 nM and receptor binding densities (Bmax values) of 3.1 and 0.5 pmol mg-1 protein, respectively. These KD values were not significantly different from that previously reported in the cerebral cortex (10.7 nM). 3. Displacement analyses of [3H]-CGP 39653 in striatum and cerebellum, performed with L-glutamic acid, 3-((+/-)-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and glycine showed a pharmacological profile similar to that reported in the cerebral cortex. L-Glutamic acid and CPP produced complete displacement of specific binding with Ki values not significantly different from the cerebral cortex. Glycine inhibited [3H]CGP 39653 binding with shallow, biphasic curves, characterized by a high and a low affinity component. Furthermore, glycine discriminated between these regions (P < 0.005, one-way ANOVA), since the apparent Ki of the high affinity component of the glycine inhibition curve (KiH) was significantly lower (Fisher's protected LSD) in the striatum than the cortex (33 nM and 104 nM, respectively). 4. Regional binding of [3H]-CGP 39653 to horizontal sections of rat brain revealed a heterogeneous distribution of binding sites, similar to that reported for other radiolabelled antagonists at the NMDA site (D-2-[3H]-amino-5-phosphonopentanoic acid ([3H]-D-AP5) and [3H]-CPP). High values of binding were detected in the hippocampal formation, cerebral cortex and thalamus, with low levels in striatum and cerebellum. 5. [3H]-CGP 39653 binding was inhibited by increasing concentrations of L-glutamic acid, CPP and glycine. L-Glutamic acid and CPP completely displaced specific binding in all regions tested, with similar IC50 values throughout. Similarly, glycine was able to inhibit the binding in all areas considered: 10 microM and 1 mM glycine reduced the binding to 80% and 65% of control (average between areas) respectively. The percentage of specific [3H]-CGP 39653 binding inhibited by 1 mM glycine varied among regions (P < 0.05, two-ways ANOVA). Multiple comparison, performed by Fisher's protected LSD method, showed that the inhibition was lower in striatum (72% of control), with respect to cortex (66% of control) and hippocampal formation (58% of control). 6. The inhibitory action of 10 microM glycine was reversed by 100 microM 7-chloro-kynurenic acid (7-CKA), a competitive antagonist of the glycine site of the NMDA receptor channel complex, in all areas tested. Moreover, reversal by 7-CKA was not the same in all regions (P < 0.05, two-ways ANOVA). In fact, in the presence of 10 microM glycine and 100 microM 7-KCA, specific [3H]-CGP 39653 binding in the striatum was 131% of control, which was significantly greater (Fisher's protected LSD) than binding in the hippocampus and the thalamus (104% and 112% of control, respectively). 7. These results demonstrate that [3H]-CGP 39653 binding can be inhibited by glycine in rat brain regions containing NMDA receptors; moreover, they suggest the existence of regionally distinct NMDA receptor subtypes with a different allosteric mechanism of [3H]-CGP 39653 binding modulation through the associated glycine site.  相似文献   

11.
The effect of the GTP-analogue guanylyl 5'-imidodiphosphate (Gpp[NH]p) on [3H]forskolin binding was studied in rat brain using autoradiography. In the striatum, 100 microM Gpp[NH]p produced a 40% increase in binding, whereas a decrease of about 30% was observed with low Gpp[NH]p concentrations (0.1-1 microM). In the molecular layer of the cerebellum all concentrations of Gpp[NH]p decreased [3H]forskolin binding. The decrease in binding disappeared in both striatum and the molecular layer of cerebellum in sections pretreated with 100 microM N-ethylmaleimide (NEM) for 10 min. NEM pretreatment did not significantly affect the stimulation of [3H]forskolin binding by micromolar concentrations of Gpp[NH]p in the striatum, but reversed the decrease observed in the molecular layer of the cerebellum, to an increase. Based on these data we suggest that the effects of the GTP-analogue Gpp[NH]p on [3H]forskolin binding may involve both Gs and Gi, where a stimulation produces an increase and decrease in binding respectively. The regional effects of Gpp[NH]p may reflect differences in the responsiveness of adenylyl cyclase to Gs and Gi-mediated effects.  相似文献   

12.
We examined the characteristics of [3H]clozapine binding sites in four rat brain regions (frontal cortex, limbic area, hippocampus and striatum) in order to elucidate the pharmacological profile of this unique atypical antipsychotic drug. The specific [3H]clozapine binding was found to be saturable and reversible in all these brain regions. Scatchard analysis of the saturation data indicated that the specific binding consisted of high- and low-affinity components. Displacement experiments showed that the muscarinic cholinergic receptor represented about 50% of [3H]clozapine binding in each brain area. Serotonin 5-HT2 and dopamine D4 receptor binding sites could also be detected by displacement experiments using ketanserin and nemonapride, respectively, in frontal cortex and limbic area, but not in hippocampus or striatum. Alpha-1, alpha-2, histamine H1, dopamine D1, D2, or D3 receptor components could not be determined within the high-affinity [3H]clozapine binding sites in any brain region. It is possible that the atypical property of clozapine may depend on the modulatory effect on dopaminergic function via 5-HT2 receptor blockade and/or may be mediated via D4 receptor blockade in the mesocortical and mesolimbic area.  相似文献   

13.
1. Radioligand binding properties of the adenosine receptor ligands, [3H]-1,3-dipropyl-8-cyclopentylxanthine ([3H]-DPCPX), and [3H]-R-phenylisopropyladenosine ([3H]-R-PIA) were investigated in frog brain membranes. 2. The specific binding of the adenosine antagonist, [3H]-DPCPX to frog brain membranes showed one binding site with Kd and Bmax values of 43.8 nM and 0.238 +/- 0.016 pmol mg-1 protein, respectively. Guanosine 5'-triphosphate (GTP, 100 microM) decreased to 72 +/- 7% and Mg2+ (8 mM) increased to 121 +/- 3% [3H]-DPCPX (40 nM) binding to frog brain membranes. 3. [3H]-DPCPX saturation binding experiments performed in the presence of Mg2+ (8 mM), or in the presence of GTP showed that Mg2+ ions decreased the Kd value of [3H]-DPCPX to 14 nM, and GTP increased this value to 65.6 nM. Bmax values were not significantly (P > 0.05) modified (0.261 +/- 0.018 pmol mg-1 protein, with Mg2+, and 0.266 +/- 0.026 pmol mg-1 protein, in presence of GTP) by the presence of Mg2+ or GTP. 4. The specific binding of [3H]-R-PIA (15 nM) was decreased to 37 +/- 6% by GTP (100 microM) and increased to 123 +/- 4% by Mg2+ (8 mM). [3H]-R-PIA saturation binding experiments performed in the presence of Mg2+ (8 mM) showed one binding site with Kd and Bmax values of 0.9 nM and 0.229 +/- 0.008 pmol mg-1 of protein, respectively. 5. The concentration-inhibition curves of adenosine agonists and antagonists versus [3H]-DPCPX binding showed the following order of potencies: CPA> R-PIA~ NECA> S-PIA> > CGS 21680, for the agonists, and XAC ~-DPCPX> > XCC> PACPX, for the antagonists.6. The present results suggest that the adenosine binding site in the frog brain membranes is G-protein coupled, but that the antagonist affinities and the pharmacological profile is different from the Al or A2 adenosine receptors.  相似文献   

14.
Specific binding of [3H]imipramine and [3H]paroxetine was simultaneously examined in human brains (frontal cortex, temporal cortex, cingulate cortex, hypothalamus, hippocampus and amygdala) from 11 controls and 11 depressed suicide victims. A single saturable high affinity site was obtained for both radioligands. Age was not related to significant changes in [3H]imipramine and [3H]paroxetine binding parameters, which indicates the stability of the brain serotonergic system with increasing age. A major finding of the present study concerns the existence of a significant decrease in the maximum number (Bmax) of [3H]imipramine binding sites in hippocampus from depressed suicides as compared with the control group, without changes in the binding affinity (Kd). In contrast, when [3H]paroxetine was used as radioligand, no changes in either Bmax or Kd were detected in any of the brain regions studied. These findings suggest that [3H]imipramine may be a better marker than [3H]paroxetine when alterations in the presynaptic serotonergic uptake site are to be detected.  相似文献   

15.
To explore target sites for endogenous D-serine that are different from the glycine site of the N-methyl-D-aspartate (NMDA) type glutamate receptor, we have studied the binding of D-[3H]serine to the synaptosomal P2 fraction prepared from the rat brain and peripheral tissues in the presence of an excess concentration (100 microM) of the glycine site antagonist 5,7-dichlorokynurenate (DCK). Nonspecific binding was defined in the presence of 1 mM unlabeled D-serine. Association, dissociation, and saturation experiments indicated that D-[3H]serine bound rapidly and reversibly to a single population of recognition sites in the cerebellar P2 fraction in the presence of DCK, with a K(D) of 614 nM and a Bmax of 2.07 pmol/mg of protein. D-Serine, L-serine, and glycine produced a total inhibition of the specific DCK-insensitive D-[3H]serine binding to the cerebellum with similar Ki values. Strychnine and 7-chlorokynurenate failed to inhibit the binding at 10 microM. The profiles of displacement of the DCK-insensitive D-[3H]serine binding by various amino acids and glutamate and glycine receptor-related compounds differ from those of any other defined recognition sites. DCK-insensitive D-[3H]serine binding was at high levels in the cerebral cortex and cerebellum but very low in the kidney and liver. The present findings indicate that the DCK-insensitive D-[3H]serine binding site could be a novel candidate for a target for endogenous D-serine in mammalian brains.  相似文献   

16.
Neurosteroids bind to unique sites on the GABA(A) receptor complex and modulate receptor function. The effects of neurosteroids on GABA(A) receptors have been well characterized in forebrain regions. However, little is known about their effects on GABA(A) receptors in the medulla, especially those areas involved in autonomic reflex pathways. Stimulation of [3H]flunitrazepam binding to the GABA(A) receptor by two progesterone metabolites, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha-OH-DHP) and 3beta-hydroxy-5alpha-pregnan-20-one (3beta-OH-DHP), was studied using autoradiographic methods in the medulla and cerebellum of female rats at estrus. [3H]Flunitrazepam binding was enhanced by 3alpha-OH-DHP in every nucleus examined in the medulla and cerebellum. This effect was stereoselective since 3beta-OH-DHP had no effect on binding in any region. No differences were observed in the degree of stimulation of [3H]flunitrazepam binding by 3alpha-OH-DHP among medullary brain regions. However, in the cerebellum, the stimulation of binding was significantly greater in the granular layer than in the molecular layer. Stimulation of [3H]flunitrazepam binding by 3alpha-OH-DHP in nuclei involved in the baroreflex pathways supports previous studies which report that neurosteroids modulate autonomic regulation of blood pressure. These actions may also underlie alterations in autonomic function during pregnancy.  相似文献   

17.
The novel selective 5-HT1A receptor antagonist radioligand [3H]WAY 100635 ([O-methyl-3H]N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2- pyridyl)cyclohexane-carboxamide) was injected i.v. to mice in an attempt to label in vivo central 5-HT1A receptors. Although 5 min after the i.v. injection of [3H]WAY 100635 (4-7.6 muCi per mouse) the amount of tritium found in the whole brain only accounted for 1.5-1.8% of the injected radioactivity, regional differences in 3H accumulation already corresponded to those of 5-HT1A receptor density. Optimal data were obtained 1 h after [3H]WAY 100635 injection as the distribution of 3H in brain was exactly that of 5-HT1A receptor binding sites in mouse brain sections labelled in vitro with [3H]WAY 100635. In particular, high level of labelling was found in the lateral septum, gyrus dentatus and CA1 area of Ammon's horn in the hippocampus, dorsal raphe nucleus and entorhinal cortex. No labelling was found in he substantia nigra, and 3H accumulated in the cerebellum represented only 12-14% of that found in the hippocampus. Pretreatment with various drugs indicated that only 5-HT1A receptor ligands were able to decrease the accumulation of 3H in all the brain areas examined except in the cerebellum. Assuming that only non-specific binding took place in the latter structure, it was possible to calculate the ID50 values of 5-HT1A receptor agonists (8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin), S 14506 (1-[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxynaphthyl+ ++)piperazine) and S 20499 ((+)-4-[N-(5-methoxy-chroman-3-yl)-N-propylamino]butyl-8- azaspiro-(4,5)-decane-7,9-dione)) and antagonists (spiperone, (-)-tertatolol, (+)-WAY 100135 (N-tert-butyl-3,4-(2-methoxyphenyl)piperazin-1-yl-2-phenyl- propanamide)) as inhibitors of 3H accumulation in the hippocampus of [3H]WAY 100635-injected mice. Comparison of these values with the in vitro affinity of the same ligands for hippocampal 5-HT1A receptors revealed marked variations in the capacity of 5-HT1A receptor agonists and antagonists to reach the brain when injected via the subcutaneous route in mice.  相似文献   

18.
Binding characteristics of alpha 2-adrenoceptors in rat cerebral cortical membranes were compared using the antagonist radioligands [3H]idazoxan, [3H]2-(2-methoxy-1,4-benzodioxan-2-yl)-2-imidazoline ([3H]RX821002), and the partial agonist radioligand [125I]2-[2,6-(dichloro-4-iodophenyl)imino]imidazoline ([125I]iodoclonidine). With [3H]RX821002 and alpha 2-adrenoceptor subtype-selective competitors, both alpha 2A/D- and alpha 2C-adrenoceptor subtypes were detected, suggesting rat cortical membranes contain approximately 90% alpha 2A/D-adrenoceptor subtype and 10% alpha 2C-adrenoceptor subtype. Only alpha 2A/D-adrenoceptors were detected with [3H]idazoxan and [125I]iodoclonidine. All three radioligands bound to a single high affinity site (Kd = 0.3-1.6 nM). However, the densities of sites labeled by [3H]idazoxan and [125I]iodoclonidine were 50% greater than the density labeled by [3H]RX821002, likely representing non-adrenoceptor binding sites. The density of [125I]iodoclonidine binding sites in glycylglycine buffer was similar to that labeled by [3H]RX821002. These results suggest that: (1) alpha 2A/D-adrenoceptors are the predominant subtype in rat cerebral cortex, (2) demonstrate that the small number of alpha 2C-adrenoceptors in this tissue can be detected using prazosin to displace [3H]RX821002 binding, and (3) non-adrenoceptor binding with [125I]iodoclonidine can be minimized with the use of glycylglycine buffer.  相似文献   

19.
SR 141716A belongs to a new class of compounds (diarylpyrazole) that inhibits brain cannabinoid receptors (CB1) in vitro and in vivo. The present study showed that [3H]-SR 141716A binds with high affinity (Kd=0.61 +/- 0.06 nM) to a homogenous population of binding sites (Bmax=0.72 +/- 0.05 pmol/mg of protein) in rate whole brain (minus cerebellum) synaptosomes. This specific binding was displaced by known cannabinoid receptor ligands with the following rank order of potency SR 141716A > CP 55,940 > WIN 55212-2 = delta9-THC > anandamide. Apart from anandamide, all these compounds were found to interact competitively with the binding sites labeled by [3H]-SR 141716A. On the other hand, agents lacking affinity for cannabinoid receptors were unable to displace [3H]-SR 141716A from its binding sites (IC50 > 10 microM). In addition, the binding of [3H]-SR 141716A was insensitive to guanyl nucleotides. Regional rat brain distribution of CB1 cannabinoid receptors detected by [3H]-SR 141716A saturation binding and autoradiographic studies, showed that this distribution was very similar to that found for [3H]-CP 55,940. In vivo, the [3H]-SR 141716A binding was displaced by SR 141716A with ED50 values of 0.39 +/- 0.07 and 1.43 +/- 0.29 mg/kg following intraperitoneal and oral administration, respectively. Finally, the [3H]-SR 141716A binding sites remained significantly occupied for at least 12 hr following oral administration of 3 mg/kg SR 141716A. Taken together, these results suggest that SR 141716A in its tritiated form is a useful research tool for labeling brain cannabinoid receptors (CB1) in vitro and in vivo.  相似文献   

20.
We have characterized the new potent and selective nonxanthine adenosine A2A receptor antagonist SCH 58261 as a new radioligand for receptor autoradiography. In autoradiographic studies using agonist radioligands for A2A receptors ([3H]CGS 21680) or A1 receptors (N6-[3H]cyclohexyladenosine), it was found that SCH 58261 is close to 800-fold selective for rat brain A2A versus A1 receptors (Ki values of 1.2 nM versus 0.8 microM). Moreover, receptor autoradiography showed that [3H]SCH 58261, in concentrations below 2 nM, binds only to the dopamine-rich regions of the rat brain, with a K(D) value of 1.4 (0.8-1.8) nM. The maximal number of binding sites was 310 fmol/mg of protein in the striatum. Below concentrations of 3 nM, the nonspecific binding was <15%. Three adenosine analogues displaced all specific binding of [3H] SCH 58261 with the following estimated Ki values (nM): 2-hex-1-ynyl-5'-N-ethylcarboxamidoadenosine, 3.9 (1.8-8.4); CGS 21680, 130 (42-405); N6-cyclohexyladenosine, 9,985 (3,169-31,462). The binding of low concentrations of SCH 58261 was not influenced by either GTP (100 microM) or Mg2+ (10 mM). The present results show that in its tritium-labeled form, SCH 58261 appears to be a good radioligand for autoradiographic studies, because it does not suffer from some of the problems encountered with the currently used agonist radioligand [3H]CGS 21680.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号