首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bilge Hacisalihoglu   《Energy Policy》2008,36(6):1867-1872
This article deals with natural gas policy of Turkey. Natural gas became important in the 1980s. In recent years, natural gas consumption has become the fastest growing primary energy source in Turkey. Natural gas becomes an increasingly central component of energy consumption in Turkey. Current gas production in Turkey meets 3% of the domestic consumption requirements. Natural gas consumption levels in Turkey have witnessed a dramatic increase, from 4.25 Bcm (billion cubic meters) in 1991 to 21.19 Bcm in 2003. Turkish natural gas is projected to increase dramatically in coming years, with the prime consumers expected to be industry and power plants. Turkey has chosen natural gas as the preferred fuel for the massive amount of new power plant capacity to be added in coming years. Turkey has supplied main natural gas need from Russian Federation; however, Turkmen and Iranian gas represent economically sound alternatives. Turkey is in a strategically advantageous position in terms of its natural gas market. It can import gas from a number of countries and diversify its sources. Turkey's motivation for restructuring its natural gas ownership and markets stems from its desire to fulfill EU accession prerequisites in the energy sector.  相似文献   

2.
Turkey is in a strategically advantageous position in terms of its natural gas market. Being in the middle of Europe and energy-rich countries of Central Asia, it can be an energy corridor between these two regions. It can import gas from a number of countries and diversify its sources. This situation may also provide motivation for a competitive gas market. The recent reform in the market, which began in 2001, was an attempt to strengthen the natural gas market to this end. However, the reform has not worked out as expected so far. This article discusses recent restructuring efforts in the Turkish natural gas market. We focus on the legal structure and economic consequences of the legal change within the international economic relations. After presenting a detailed discussion of the legal framework, we draw attention to the problems of the industry and difficulties in the transition to a more competitive market structure. In the end, we touch upon some regulatory issues and potential conflicts.  相似文献   

3.
Natural gas could possibly become a si0gnificant portion of the future fuel mix in China. However, there is still great uncertainty surrounding the size of this potential market and therefore its impact on the global gas trade. In order to identify some of the important factors that might drive natural gas consumption in key demand areas in China, we focus on three regions: Beijing, Guangdong, and Shanghai. Using the economic optimization model MARKAL, we initially assume that the drivers are government mandates of emissions standards, reform of the Chinese financial structure, the price and available supply of natural gas, and the rate of penetration of advanced power generating and end-use. The results from the model show that the level of natural gas consumption is most sensitive to policy scenarios, which strictly limit SO2 emissions from power plants. The model also revealed that the low cost of capital for power plants in China boosts the economic viability of capital-intensive coal-fired plants. This suggests that reform within the financial sector could be a lever for encouraging increased natural gas use.  相似文献   

4.
Efficient operation of modern energy distribution systems often requires forecasting future energy demand. This paper proposes a strategy to estimate forecasting risk. The objective of the proposed method is to improve knowledge about expected forecasting risk and to estimate the expected cash flow in advance, based on the risk model. The strategy combines an energy demand forecasting model, an economic incentive model and a risk model. Basic guidelines are given for the construction of a forecasting model that combines past energy consumption data, weather data and weather forecast. The forecasting model is required to estimate expected forecasting errors that are the basis for forecasting risk estimation. The risk estimation strategy also requires an economic incentive model that describes the influence of forecasting accuracy on the energy distribution systems’ cash flow. The economic model defines the critical forecasting error levels that most strongly influence cash flow. Based on the forecasting model and the economic model, the development of a risk model is proposed. The risk model is associated with critical forecasting error levels in the context of various influential parameters such as seasonal data, month, day of the week and temperature. The risk model is applicable to estimating the daily forecasting risk based on the influential parameters. The proposed approach is illustrated by a case study of a Slovenian natural gas distribution company.  相似文献   

5.
Gas market in Europe is experiencing a radical change for different reasons, partially determined and accelerated by economic downturn of the last period. In the past few years, many European countries adopted energy policies largely based on the utilization of natural gas. In fact, a sharp increase of the demand was observed and, at the same time, a lot of infrastructures were developed to assure the necessary supply. In the last few years, due to the economic downturn, natural gas demand decreased, causing a consistent oversupply on the market, which altered the consolidated dynamics of the sector. Understanding the changes currently under development in the European gas market is of paramount importance in order to design future strategies for the sector; in particular, it is necessary to understand if the present situation will cause a reshaping of the sector.  相似文献   

6.
In 2009 and 2010, major offshore natural gas reserves were discovered near the State of Israel. This article examines Israel's newly discovered natural gas reserves and the implications of this discovery for Israel, the Middle East, and the Mediterranean region. The article will discuss Israel's energy security approach; the role of natural gas in Israel's energy consumption patterns; the organization of Israel's natural gas sector; regional political and security implications of the natural gas discoveries; the prospects for export, and the outlook for various natural gas markets. These new discoveries significantly improve Israel's energy security. They may also spur Israel to develop technologies related to utilization of natural gas in a variety of sectors, such as transportation. The discoveries may contribute to the emergence of a number of maritime border delimitation conflicts in the Eastern Mediterranean. At current volumes, the Israeli discoveries will not be a game-changer for gas markets in southern Europe or liquefied natural gas (LNG) markets. However, they will lead to expanded natural gas consumption in the region. In addition, offshore exploration efforts in Israel and in neighboring countries are intensifying. Additional discoveries may turn the Eastern Mediterranean region into a new source of natural gas and oil.  相似文献   

7.
Two computable general equilibrium models, one global and the other providing U.S. regional detail, are applied to analysis of the future of U.S. natural gas. The focus is on uncertainties including the scale and cost of gas resources, the costs of competing technologies, the pattern of greenhouse gas mitigation, and the evolution of global natural gas markets. Results show that the outlook for gas over the next several decades is very favorable. In electric generation, given the unproven and relatively high cost of other low-carbon generation alternatives, gas is likely the preferred alternative to coal. A broad GHG pricing policy would increase gas use in generation but reduce use in other sectors, on balance increasing its role from present levels. The shale gas resource is a major contributor to this optimistic view of the future of gas. Gas can be an effective bridge to a lower emissions future, but investment in the development of still lower CO2 technologies remains an important priority. International gas resources may well prove to be less costly than those in the U.S., except for the lowest-cost domestic shale resources, and the emergence of an integrated global gas market could result in significant U.S. gas imports.  相似文献   

8.
Natural gas is the major indigenous source of energy in Bangladesh and accounts for almost one-half of all primary energy used in the country. Per capita and total energy use in Bangladesh is still very small, and it is important to understand how energy, and natural gas demand will evolve in the future. We develop a dynamic econometric model to understand the natural gas demand in Bangladesh, both in the national level, and also for a few sub-sectors. Our demand model shows large long run income elasticity – around 1.5 – for aggregate demand for natural gas. Forecasts into the future also show a larger demand in the future than predicted by various national and multilateral organizations. Even then, it is possible that our forecasts could still be at the lower end of the future energy demand. Price response was statistically not different from zero, indicating that prices are possibly too low and that there is a large suppressed demand for natural gas in the country.  相似文献   

9.
The design and development of natural gas transmission pipeline networks are multidisciplinary problems that require various engineering knowledge. In this problem, the type, location, and installation schedule of major physical components of a network including pipelines and compressor stations are decided upon over a planning horizon with least cost goal and subject to network constraints. Practically, this problem has been viewed as a conceptual design case and not as an optimization problem that tries to select the best design option among a set of possible solutions. Consequently, conceptual design approaches are usually suboptimal and work only for short-run development planning. We propose an integrated nonlinear optimization model for this problem. This model provides the best development plans for an existing network over a long-run planning horizon with least discounted operating and capital costs. A heuristic random search optimization method is also developed to solve the model. We show the application of the model through a simple case study and discuss how non-economic objectives may also be incorporated into model.  相似文献   

10.
This paper examines the impact of natural gas consumption, real gross fixed capital formation and trade on the real GDP in the case of Tunisia over the period 1980–2010. We use an Autoregressive Distributed Lag (ARDL) bounds testing approach to test for cointegration between the variables. The Toda–Yamamoto approach is then used to test for causality. Our findings indicate the existence of a long-term relationship between the variables. Natural gas consumption, real gross fixed capital formation and trade add in economic growth. Natural gas consumption, real gross fixed capital formation and real trade cause real GDP in Tunisia. These findings open up new insights for policymakers to formulate a comprehensive energy policy to sustain economic growth in the long-term.  相似文献   

11.
European energy security: The future of Norwegian natural gas production   总被引:1,自引:0,他引:1  
The European Union (EU) is expected to meet its future growing demand for natural gas by increased imports. In 2006, Norway had a 21% share of EU gas imports. The Norwegian government has communicated that Norwegian gas production will increase by 25–40% from today's level of about 99 billion cubic meters (bcm)/year. This article shows that only a 20–25% growth of Norwegian gas production is possible due to production from currently existing recoverable reserves and contingent resources. A high and a low production forecast for Norwegian gas production is presented. Norwegian gas production exported by pipeline peaks between 2015 and 2016, with minimum peak production in 2015 at 118 bcm/year and maximum peak production at 127 bcm/year in 2016. By 2030 the pipeline export levels are 94–78 bcm. Total Norwegian gas production peaks between 2015 and 2020, with peak production at 124–135 bcm/year. By 2030 the production is 96–115 bcm/year. The results show that there is a limited potential for increased gas exports from Norway to the EU and that Norwegian gas production is declining by 2030 in all scenarios. Annual Norwegian pipeline gas exports to the EU, by 2030, may even be 20 bcm lower than today's level.  相似文献   

12.
The debate over the availability of conventional natural gas has been nearly as strong as that for conventional oil. In Europe, the debate is strengthened due to the region’s dependence on natural gas from outside countries. In addition, concern has been expressed by some energy experts in recent years about an imminent shortage of natural gas from Europe, caused supposedly by dwindling natural gas resources. Thus, the purpose of this analysis is to address the concern by assessing the availability of natural gas in the region. This is done by estimating a cumulative availability curve showing natural gas endowment versus production costs. The findings indicate that natural gas in Europe is more available and economic than often assumed. Increased research and development of this potential could help increase energy security in the region.  相似文献   

13.
The use of natural gas in China is still relatively immature, as gas production only supplies a low percentage of the domestic energy system. In contrast, Chinese economy mainly relies on coal with a 67% share of the total primary energy supply. The environmental impact from this high coal dependence is significant and planners have sought for cleaner energy sources. Natural gas is both cleaner and generally more efficient than coal and gas consumption is rising quickly due to these facts.The growth tendency indicates that natural gas will become an important substitution for coal in some parts of the Chinese primary energy consumption. To quantify this tendency, this paper uses a system dynamics model to create a possible outlook. The results show that the gas consumption in China will continue to increase fast to 89.5 billion cubic meters in 2010; 198.2 billion cubic meters in 2020, before finally reach 340.7 billion cubic meters in 2030.Scenario analysis is used to assess the accuracy of the results. Finally, this paper gives policy suggestions on natural gas exploration and development, infrastructure constructions and technical innovations to promote a sustainable development of China’s natural gas industry.  相似文献   

14.
Turkey is currently in the process of restructuring and liberalization of its natural gas market. However, Turkish Petroleum Pipeline Corporation’s (BOTAS) monopoly of more than 80% of natural gas imports, and ranging subsidized gas prices from the beginning, mainly for power generators but also for households and the industry, are among the factors preventing the formation of a fully competitive and liberal market. Hence, the primary aim of this study is to gain insight into the private sector view of the restructuring process, through a qualitative inquiry, including an industry-wide survey and a Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis. This study reveals the various internal (Strengths and Weaknesses) and external (Opportunities and Threats) factors, the degree of importance of each factor for the future of the industry, and the level of consistency between these aforementioned assessments. Based on the consensus reached among the Turkish Natural Gas industry representatives, policy recommendations are provided. Results suggest that market liberalization and increase in private sector involvement are the two strengths agreed upon. Likewise, competitive structuring is evaluated as a critical factor for transparency and efficiency, rather than being simply infrastructure-based development. In addition, the participants concur on the importance of increasing share of LNG in the total natural gas supply.  相似文献   

15.
In this paper, a logistic based approach is used to forecast the natural gas consumption for residential as well as commercial sectors in Iran. This approach is relatively simple compared with other forecasting approaches. To make this approach even simpler, two different methods are proposed to estimate the logistic parameters. The first method is based on the concept of the nonlinear programming (NLP) and the second one is based on genetic algorithm (GA). The forecast implemented in this paper is based on yearly and seasonal consumptions. In some unusual situations, such as abnormal temperature changes, the forecasting error is as high as 8.76%. Although this error might seem high, one does not need to be deeply concerned about the overall results since these unusual situations could be filtered out to yield more reliable predictions. In general, the overall results obtained using NLP and GA approaches are as well as or even in some cases better than the results obtained using some older approaches such as Cavallini’s. These two approaches along with the gas consumption data in Iran for the previous 10 years are used to predict the consumption for the 11th, 12th, and 13th years. It is shown that the logistic approach with the use of NLP and GA yields very promising results.  相似文献   

16.
Natural gas is an important energy source for power generation, a chemical feedstock and residential usage. It is important to analyse the future production of conventional and unconventional natural gas. Analysis of the literature determined conventional URR estimates of 10,700–18,300 EJ, and the unconventional gas URR estimates were determined to be 4250–11,000 EJ. Six scenarios were assumed, with three static where demand and supply do not interact and three dynamic where it does. The projections indicate that world natural gas production will peak between 2025 and 2066 at 140–217 EJ/y (133–206 tcf/y). Natural gas resources are more abundant than some of the literature indicates.  相似文献   

17.
The paper presents a technical, economic and environmental analyses of a chamber furnace used to heat the charge before forging. The energy efficiency of the furnace before the modernization was 18%, after the modernization it was 31% (partial modernization due to large financial outlays). Other variants were also analysed: complete modernization, the variant of furnace modernization with 30% hydrogen content in the gas and the variant with 100% hydrogen as fuel. The analyses showed that with the current gas price (0.025 EUR/kWh) and the price of emission allowances (nearly 60 EUR/MgCO2) and 100 cycles/year, the difference in Net Present Value (NPV) before base variant and partial modernization is around 900,000 EUR and before base variant and full modernization is 1,200,000 EUR. The introduction of the gas and 30% of hydrogen co-combustion option versus the base scenario option for 150 cycles per year results in a NPV difference of at least 2 million EUR. The option of 100% hydrogen as a fuel is the most advantageous from the point of view of reducing CO2 emissions - it is largely influenced by the rising prices of CO2 emission allowances.  相似文献   

18.
The UK Government has decided to remove the British Gas Corporation's buying rights for natural gas on the UK Continental Shelf. Here P. Lehmann and N. Shaw look at the possible consequences. They suggest that, in the case of the natural resources market forces will not necessarily result in optimal solutions for society as a whole. Thus, the proposed change is likely to result in over-rapid depletion of natural gas reserves, with consequences for the rest of the economy and other energy industries. It will do little to improve the available information about the amount of unused gas reserves in UK waters. It will increase still further the dominant role of the major oil companies in the energy market and will leave more of the economic rent from North Sea gas with the producing companies  相似文献   

19.
20.
Energy storage from renewable sources is one of the main current goals for the energy sector, and the production of a substitute of natural gas could be a good solution to solve the problem in the short term, helping the transition to hydrogen in the long term.Renewable energy sources usually generate variable electric power or medium/low energy content gas. This paper proposes a way to upgrade these products through the use of electrolytic hydrogen. By using electrolytic oxygen as an oxidant for biomass partial oxidation and for high temperature fuel cells, the exhaust gas after post-combustion is an almost pure mixture of water and carbon dioxide. Once such a gas is dehydrated, the carbon dioxide can be mixed with electrolytic hydrogen to obtain methane through the Sabatier process.Four layouts based on molten carbonate fuel cells and solid oxide fuel cells has been investigated. The results obtained are very similar: the conversion efficiency is close to 60% and the mix of energy output consist of fuel for about 75% and electric power for about 25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号