首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An analytical job creation model for the US power sector from 2009 to 2030 is presented. The model synthesizes data from 15 job studies covering renewable energy (RE), energy efficiency (EE), carbon capture and storage (CCS) and nuclear power. The paper employs a consistent methodology of normalizing job data to average employment per unit energy produced over plant lifetime. Job losses in the coal and natural gas industry are modeled to project net employment impacts. Benefits and drawbacks of the methodology are assessed and the resulting model is used for job projections under various renewable portfolio standards (RPS), EE, and low carbon energy scenarios We find that all non-fossil fuel technologies (renewable energy, EE, low carbon) create more jobs per unit energy than coal and natural gas. Aggressive EE measures combined with a 30% RPS target in 2030 can generate over 4 million full-time-equivalent job-years by 2030 while increasing nuclear power to 25% and CCS to 10% of overall generation in 2030 can yield an additional 500,000 job-years.  相似文献   

2.
The quality of life and safeness of the present and future generations are strongly intertwined with the availability of energy sources and the sustainability of the energy infrastructure. Energy consumption in developed countries grows at a rate of approximately 1% per year, and that of developing countries, 5% per year (Muneer et al., 2005 [1]). Present reserves of oil and natural gas can only cover consumption at this rate for the next 50 years in the case of oil, and for the next 70 years in the case of natural gas. Therefore, one of the fundamental priorities for a country such as Algeria is to use several renewable energies (RE) sources and environmentally friendly energy conversion technologies. Algeria is endowed with large reserves of energy sources, mainly hydrocarbons and a considerable potential for the utilisation of RE sources especially with respect to solar energy. Algeria has the potential to be one of the major contributors in solar energy and become a role model to other countries in the world. RE are now one of the major elements of Algeria's energy policy and in view of boosting the national effort in terms of RE beyond 2011, Algeria has developed a national programme for the period 2011–2030 to promote concrete actions in the fields of energy efficiency and RE in line with the approach adopted by the government on February 3, 2011. Besides, it confirms Algerian's ambition to become an international hub for industrial and energy production and exportation in the solar sector. With this in mind, along with the environmental responsibility issues, public awareness gradually increased over the last seven years and alternative energy resources have become a new area of interest. As a tangible target, the Ministry of Energy and Mines (MEM) strategic plan aims to reach a 40% share of RE (mainly solar) in electric energy production by 2030. The various future projects are all factors that will undoubtedly give Algeria an important role in the implementation of RE technology in North Africa, the capacity for providing sustainable supply of cost-effective electricity from RE sources for the needs of the population, and the possibility of even exporting 10,000 MW to neighbouring and European market. This paper provides a detailed analysis of the existing renewable energy sector and a forecast for demand growth, additional capacity, investment requirements and Algeria's ambitious objectives of use of RE and environment protection. The paper also discusses the current energy scenario and explores the alternative energy like solar and wind to ensure energy security supply, reliability, greater efficiency in energy conversion, transmission and utilisation. Particular attention is paid to Algeria's global and sustainable solutions of the environmental challenges and the problems of conservation of fossil energy resources under the clean development mechanism (CDM) structure. The report also provides a detailed analysis of the existing renewable energy sector and a forecast for demand growth, additional capacity, and investment requirements  相似文献   

3.
Effective policy and regulatory frameworks are paramount to incentivising the deployment of renewable energy to achieve long term reductions in carbon emissions. Australia's renewable energy policy has taken significant steps towards encouraging the deployment of lower-emission energy generation. Significant policy barriers still exist at the federal and state levels, however, which have reduced the effectiveness of a concerted national effort to deploy renewables. The current policy landscape has favoured mature technologies which present the lowest investment risk at the expense of emerging options which may present greater efficiency and emissions reduction gains. The lack of support for emerging technologies delays their effective deployment and the accumulation of highly skilled human capital, until the medium to long term. This paper outlines the key policy frameworks, incentives and regulatory environment which encompasses the renewable energy sector, and presents a critical analysis of the barriers faced by the industry.  相似文献   

4.
Many consumers today are purchasing renewable energy in large part for the greenhouse gas (GHG) emissions benefits that they provide. Emerging carbon regulation in the US has the potential to affect existing markets for renewable energy. Carbon cap-and-trade programs are now under development in the Northeast under the Regional Greenhouse Gas Initiative (RGGI) and in early stages of development in the West and Midwest. There is increasing discussion about carbon regulation at the national level as well. While renewable energy will likely benefit from carbon cap-and-trade programs because compliance with the cap will increase the costs of fossil fuel generation, cap-and-trade programs can also impact the ability of renewable energy generation to affect overall CO2 emissions levels and obtain value for those emissions benefits. This paper summarizes key issues for renewable energy markets that are emerging with carbon regulation, such as the implications for emissions benefits claims and voluntary market demand and the use of renewable energy certificates (RECs) in multiple markets. It also explores policy options under consideration for designing carbon policies to enable carbon markets and renewable energy markets to work together.  相似文献   

5.
Concerns about climate change have spurred governments to reduce carbon emissions by supporting adoption of renewable energy (RE) technologies. Due to the intermittent and location-specific nature of RE technologies, energy storage has become important because it could be used to smooth out temporal disparities in residual demand. Thus, carbon policy has made storage-enabled RE generation more critical to the power sector, and this enhanced position could be exploited by firms to exert market power. Using an equilibrium model, we examine the implications of policy interventions and technological change on the marginal value of energy storage in a power market with RE and thermal generation. In particular, we specify the market conditions under which RE producers with storage strategically shift deployment of their resource to the off-peak period and outline its implications for the marginal value of RE storage. Moreover, we find that even price-taking RE producers may actually increase off-peak RE production as storage efficiency increases. Consequently, the RE producer's profit decreases with storage efficiency, which conflicts with the social objective of improving storage efficiency. These private and social incentives can be better aligned via a carbon tax, however. Hence, our results may inform the regulatory process governing market design of a power sector with increasing capacities of RE generation and storage.  相似文献   

6.
This paper aims to present a review on Malaysia's national energy developments by looking at various angles in terms of renewable energy and energy efficiency. Energy demand and consumption by sectors are presented as well as the fuel mix in electricity generation. Key energy policies implemented from the incorporation of Malaysia's national oil company, Petronas in 1974 until the National Green Technology Policy 2009 and a future policy will be addressed. The roles of key players as well as important agencies in energy development are briefly presented. Key programmes in energy development such as Malaysian Industrial Energy Efficiency Improvement Project, Small Renewable Energy Power Programme and Building Energy Efficiency Programme are discussed as well as successful initiatives from the programmes. Malaysia's international involvements towards reduction of greenhouse gas emissions and carbon emissions especially Montreal Protocol and Kyoto Protocol are highlighted. As a conclusion, Malaysia is aware of its role in formulating its national energy development policies, sensitive towards the country's development towards the environment and utilization of energy resources as well as conscientious and responsive towards the call for sustainable development in promoting renewable energy and energy efficiency.  相似文献   

7.
陈琳 《中外能源》2013,18(1):17-22
从产业关联的角度出发,采用结构分解分析法(SDA)给出了中国能源消费碳排放的投入产出分析模型.基于投入产出模型,利用1997年、2002年、2005年、2007年的投入产出数据和能源消费数据,依据政府间气候变化专门委员会(IPCC)给出的二氧化碳排放量的计算公式计算了各产业部门的碳排放量,并进而计算了各部门的直接碳排放强度,然后依据结构分解方法对中国能源消费碳排放的影响因素进行了详细的分解分析.研究结果发现:碳排放强度在1997 ~ 2002年和2005~2007年均有大幅度的降低,而在2002~2005年却有一个小幅上升.反映能源使用效率的部门直接碳排放强度系数和反映生产技术的完全需求系数是我国碳排放强度变化的两个最主要的影响因素.建议各行业各部门要用高新技术和先进适用技术改造和提升传统产业,加大投资结构调整力度,坚决淘汰落后产能,切实抑制低水平重复建设和高耗能产业的扩张,逐步加大对环保产业、新能源产业和高新技术产业的投资倾斜.  相似文献   

8.
This paper analyzes the impact of hydrogen as energy storage on production and investment decisions in an electricity market when individual participants behave strategically. We develop a game-theoretic model on investment and generation game à la Cournot under the open-loop information structure. This framework is implemented as a mixed complementarity problem and applied to the German case assuming the phase-out of the German nuclear power plants, rising renewable energy supply and increasing energy demand for electric vehicles. The numerical results of our analysis indicate that utilization of energy storage has a positive effect on energy systems with large amount of intermittent electricity and inelastic demand. We find that additional hydrogen storage capacities improve system reliability, increase overall welfare and decrease GHG emissions. Adding demand for hydrogen as a fuel for FCEVs allows for a synergetic use of the technology and changes the investment incentives for energy storage. Although the power-to-gas technology has a price-smoothing effect the overall generation capacity is higher with energy storage providing additional supply security in markets with a large amount of intermittent energy production.  相似文献   

9.
Present trends of electrical energy supply and demand are not sustainable because of the huge gap between demand and supply in foreseeable future in India. The path towards sustainability is exploitation of energy conservation and aggressive use of renewable energy systems. Potential of renewable energy technologies that can be effectively harnessed would depend on future technology developments and breakthrough in cost reduction. This requires adequate policy guidelines and interventions in the Indian power sector. Detailed MARKAL simulations, for power sector in India, show that full exploitation of energy conservation potential and an aggressive implementation of renewable energy technologies lead to sustainable development. Coal and other fossil fuel (gas and oil) allocations stagnated after the year 2015 and remain constant up to 2040. After the year 2040, the requirement for coal and gas goes down and carbon emissions decrease steeply. By the year 2045, 25% electrical energy can be supplied by renewable energy and the CO2 emissions can be reduced by 72% as compared to the base case scenario.  相似文献   

10.
Decarbonization of the energy system is a key goal of the Paris Agreements, in order to limit temperature rises to under 2° Celsius. Hydrogen has the potential to play a key role through its versatile production methods, end uses and as a storage medium for renewable energy, engendering the future low-carbon energy system. This research uses a global model cognizant of energy policy, technology learning curves and international carbon reduction targets to optimize the future energy system in terms of cost and carbon emissions to the year 2050. Exploring combinations of four exploratory scenarios incorporating hydrogen city gas blend levels, nuclear restrictions, regional emission reduction obligations and carbon capture and storage deployment timelines, it was identified that hydrogen has the potential to supply approximately two percent of global energy needs by 2050. Irrespective of the quantity of hydrogen produced, the transport sector and passenger fuel cell vehicles are consistently a preferential end use for future hydrogen across regions and modeled scenarios. In addition to the potential contribution of hydrogen, a shift toward renewable energy and a significant role for carbon capture and storage is identified to underpin carbon target achievement by 2050.  相似文献   

11.
A target-oriented scenario of future energy demand and supply is developed in a backcasting process. The main target is to reduce global CO2 emissions to around 10 Gt/a in 2050, thus limiting global average temperature increase to 2 °C and preventing dangerous anthropogenic interference with the climate system. A 10-region energy system model is used for simulating global energy supply strategies. A review of sector and region-specific energy efficiency measures resulted in the specification of a global energy demand scenario incorporating strong energy efficiency measures. The corresponding supply scenario has been developed in an iterative process in close cooperation with stakeholders and regional counterparts from academia, NGOs and the renewable energy industry. The 2 °C scenario shows that renewable energy could provide as much as half of the world's energy needs by 2050. Developing countries can virtually stabilise their CO2 emissions, while at the same time increasing energy consumption through economic growth. OECD countries will be able to reduce their emissions by up to 80%.  相似文献   

12.
Renewable energies (RE) represent a cornerstone to steer our energy system in the direction of sustainability and supply security. Generating electricity, heat or biofuels from renewable energy sources has become a high priority in the energy policy strategies at national level as well as at a global scale. Challenging goals for these “new” supply options to meet our energy demands have been set, e.g. at European level by the commitment of meeting 20% of the overall energy demand from renewable energy sources by 2020.  相似文献   

13.
Sustainable development requires methods and tools to measure and compare the environmental impacts of human activities for various products (goods and services). Providing society with goods and services contributes to a wide range of environmental impacts. Environmental impacts include emissions into the environment and the consumption of resources as well as other interventions such as land use, etc. Life cycle assessment (LCA) is a technique for assessing environmental loads of a product or a system. The aim of this paper is to review existing energy and CO2 life cycle analyses of renewable sources based electricity generation systems.The paper points out that carbon emission from renewable energy (RE) systems are not nil, as is generally assumed while evaluating carbon credits. Further the range of carbon emissions from RE systems have been found out from existing literature and compared with those from fossil fuel based systems, so as to assist in a rational choice of energy supply systems.  相似文献   

14.
Motivated by the increasing transition from fossil fuel–based centralized systems to renewable energy–based decentralized systems, we consider a bi‐objective investment planning problem of a grid‐connected decentralized hybrid renewable energy system. In this system, solar and wind are the main electricity generation resources. A national grid is assumed to be a carbon‐intense alternative to the renewables and is used as a backup source to ensure reliability. We consider both total cost and carbon emissions caused by electricity purchased from the grid. We first discuss a novel simulation‐optimization algorithm and then adapt multi‐objective metaheuristic algorithms. We integrate a simulation module to these algorithms to handle the stochastic nature of this bi‐objective problem. We perform extensive comparative analysis for the solution approaches and report their performances in terms of solution time and quality based on well‐known measures from the literature.  相似文献   

15.
Economic growth with less use of primary energy and lower carbon emissions can be achieved through existing and new technical solutions and by behavioural change. These solutions secure growth with lower carbon emissions and reduce our dependence on oil and gas, thereby improving security of energy supply. The implication of the Energy White Paper goal of reducing CO2 emissions by 60% by 2050 is a six-fold reduction in the carbon intensity of the UK economy, and further reductions will be needed. Efficient and renewable supply, distribution and end-use technologies have multiplicative effects, but constraining demand growth is crucial to the rate and extent of reducing emissions. Goals include reductions in the energy intensity of transport and buildings and in the energy intensity of major building materials with the development of technologies and demand management. There will also need to be infrastructural developments that encourage low-carbon technologies and increase energy diversity and security of supply, better low-carbon planning and improved co-ordination of planning, building control and other policy tools, better monitoring and feedback on the real performance of energy-efficient technologies, and improved capabilities to model whole energy systems, including demand and supply as well as social and economic issues.  相似文献   

16.
The electricity infrastructure in many developed countries requires significant investment to meet ambitious carbon emissions reduction targets, and to bridge the gap between future supply and demand. Perennial energy crops have the potential to deliver electricity generation capacity while reducing carbon emissions, leading to polices supporting the adoption of these crops. In the UK, for example, support has been in place over the past decade, although uptake and the market development have so far been relatively modest. This paper combines biophysical and socio-economic process representations within an agent-based model (ABM), to offer insights into the dynamics of the development of the perennial energy crop market. Against a changing policy landscape, several potential policy scenarios are developed to evaluate the cost-effectiveness of the market in providing a source of low carbon renewable electricity, and to achieve carbon emissions abatement. The results demonstrate the key role of both energy and agricultural policies in stimulating the rate and level of uptake; consequently influencing the cost-effectiveness of these measures. The UK example shows that energy crops have the potential to deliver significant emissions abatement (up to 24 Mt carbon dioxide equivalent year−1, 4% of 2013 UK total emissions), and renewable electricity (up to 29 TWh year−1, 8% of UK electricity or 3% of primary energy demand), but a holistic assessment of related policies is needed to ensure that support is cost-effective. However, recent policy developments suggest that domestically grown perennial energy crops will only play a niche role (<0.2%) of the UK energy balance.  相似文献   

17.
This paper reports on an in-depth analysis of the US cement industry, identifying cost-effective energy efficiency measures and potentials. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%, from 7.9 GJ/t to 5.6 GJ/t, while specific carbon dioxide emissions due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/tonne to 0.24 tC/tonne. We examined 30 energy-efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. We constructed an energy conservation supply curve for the US cement industry which found a total cost-effective energy saving of 11% of 1994 energy use for cement making and a saving of 5% of total 1994 carbon dioxide emissions. Assuming the increased production of blended cement, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential would increase to 18% of total energy use, and carbon dioxide emissions would be reduced by 16%. This demonstrates that the use of blended cements is a key cost-effective strategy for energy efficiency improvement and carbon dioxide emission reductions in the US cement industry.  相似文献   

18.
R. E. H. Sims   《Solar Energy》2004,76(1-3):9
“We recognize the importance of renewable energy for sustainable development, diversification of energy supply, and preservation of the environment. We will ensure that renewable energy sources are adequately considered in our national plans and encourage others to do so as well. We encourage continuing research and investment in renewable energy technology, throughout the world”.Communique from the G8 Leaders’ Summit, Genoa, July 2001.The Third Assessment Report of the IPCC confirmed that the Earth’s climate is changing as a result of human activities, particularly from energy use, and that further change is inevitable. Natural ecosystems are already adapting to change, some are under threat, and it is evident that human health and habitats will be affected world-wide. Such climate changes could also affect the present supplies of renewable energy sources and the performance and reliability of the conversion technologies. This paper concentrates on the reduction of carbon dioxide emissions and the role that the global renewable energy industry might play in this regard. (The five other major greenhouse gases are given less emphasis here.) The paper compares the costs of renewable energy systems with fossil fuel-derived energy services and considers how placing a value on carbon emissions will help provide convergence. The move towards a de-carbonised world, driven partly by climate change science and partly by the business opportunities it offers, will need to occur sooner rather than later if an acceptable stabilisation level of atmospheric carbon dioxide is to be achieved. Government policy decisions made now will determine the sort of future world we wish our children to inherit. The renewable energy era has begun.  相似文献   

19.
The study probes cointegration and causality between carbon emissions and economic growth for India using ARDL bounds testing approach complemented by Johansen–Juselius maximum likelihood procedure in a multivariate framework by incorporating energy supply, investment and employment for time span 1971–2006. The study fails to establish long-run equilibrium relationship and long term causality between carbon emissions and economic growth; however, there exists a bi-directional short-run causality between the two. Hence, in the short-run, any effort to reduce carbon emissions could lead to a fall in the national income. This study also establishes unidirectional short-run causality running from economic growth to energy supply and energy supply to carbon emissions. The absence of causality running from energy supply to economic growth implies that in India, energy conservation and energy efficiency measures can be implemented to minimize the wastage of energy across value chain. Such measures would narrow energy demand–supply gap. Absence of long-run causality between carbon emissions and economic growth implies that in the long-run, focus should be given on harnessing energy from clean sources to curb carbon emissions, which would not affect the country’s economic growth.  相似文献   

20.
The Energy [R]evolution 2010 scenario is an update of the Energy [R]evolution scenarios published in 2007 and 2008. It takes up recent trends in global energy demand and production and analyses to which extent this affects chances for achieving climate protection targets. The main target is to reduce global CO2 emissions to 3.7 Gt/a in 2050, thus limiting global average temperature increase to below 2°C and preventing dangerous anthropogenic interference with the climate system. A ten-region energy system model is used for simulating global energy supply strategies. A review of sector and region specific energy efficiency measures resulted in the specification of a global energy demand scenario incorporating strong energy efficiency measures. The corresponding supply scenario has been developed in an iterative process in close cooperation with stakeholders and regional counterparts from academia, NGOs and the renewable energy industry. The Energy [R]evolution scenario shows that renewable energy can provide more than 80% of the world’s energy needs by 2050. Developing countries can virtually stabilise their CO2 emissions by 2025 and reduce afterwards, whilst at the same time increasing energy consumption due to economic growth. OECD countries will be able to reduce their emissions by up to 90% by 2050. However, without a comprehensive energy efficiency implementation strategy across all sectors, the renewable energy development alone will not be enough to make these drastic emissions cuts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号