首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The European market for renewable electricity received a major stimulus from the adoption of the Directive on the Promotion of Renewable Electricity. The Directive specifies the indicative targets for electricity supply from renewable energy sources (RES-E) to be reached in European Union (EU) Member States in the year 2010. It also requires Member States to certify the origin of their renewable electricity production. This article presents a first EU-wide quantitative evaluation of the effects of meeting the targets, using an EU-wide system for tradable green certificates (TGC). We calculate the equilibrium price of green certificates and identify which countries are likely to export or import certificates. Cost advantages of participating in such an EU-wide trading scheme are determined for each of the Member States. Moreover, we identify which choice of technologies results in meeting targets at least costs. Results are obtained from a model that quantifies the effects of achieving the RES-E targets in the EU with and without trade. The article provides a brief insight in this model as well as the methodology that was used to specify cost potential curves for renewable electricity in each of the 15 EU Member States. Model calculations show that within the EU-wide TGC system, the total production costs of the last option needed to satisfy the overall EU RES-E target equals 9.2 eurocent/kWh. Assuming that the production price of electricity on the European power market would equal 3 eurocent/kWh in the year 2010, the indicative green certificate price equals 6.2 eurocent/kWh. We conclude that implementation of an EU-wide TGC system is a cost-efficient way of stimulating renewable electricity supply.  相似文献   

2.
The objective of this article is to examine the consequences of technological developments on the market diffusion of different renewable electricity technologies in the EU-25 until 2020, using a market simulation model (ADMIRE REBUS). It is assumed that from 2012 a harmonized trading system will be implemented, and a target of 24% renewable electricity (RES-E) in 2020 is set and met. By comparing optimistic and pessimistic endogenous technological learning scenarios, it is found that diffusion of onshore wind energy is relatively robust, regardless of technological development, but diffusion rates of offshore wind energy and biomass gasification greatly depend on their technological development. Competition between these two options and (existing) biomass combustion options largely determines the overall costs of electricity from renewables and the choice of technologies for the individual member countries. In the optimistic scenario, in 2020 the market price for RES-E is 1 €ct/kWh lower than in the pessimistic scenario (about 7 vs. 8 €ct/kWh). As a result, total RES-E production costs are 19% lower, and total governmental expenditures for RES-market stimulation are 30% lower in the optimistic scenario.  相似文献   

3.
We have developed a state-scale version of the MARKAL energy optimization model, commonly used to model energy policy at the US national scale and internationally. We apply the model to address state-scale impacts of a renewable electricity standard (RES) and a carbon tax in one southeastern state, Georgia. Biomass is the lowest cost option for large-scale renewable generation in Georgia; we find that electricity can be generated from biomass co-firing at existing coal plants for a marginal cost above baseline of 0.2–2.2 cents/kWh and from dedicated biomass facilities for 3.0–5.5 cents/kWh above baseline. We evaluate the cost and amount of renewable electricity that would be produced in-state and the amount of out-of-state renewable electricity credits (RECs) that would be purchased as a function of the REC price. We find that in Georgia, a constant carbon tax to 2030 primarily promotes a shift from coal to natural gas and does not result in substantial renewable electricity generation. We also find that the option to offset a RES with renewable electricity credits would push renewable investment out-of-state. The tradeoff for keeping renewable investment in-state by not offering RECs is an approximately 1% additional increase in the levelized cost of electricity.  相似文献   

4.
The main purpose of this work is to assess the unavoidable increase in the cost of electricity of a generation system by the integration of the necessary renewable energy sources for power generation (RES-E) technologies in order for the European Union Member States to achieve their national RES energy target. The optimization model developed uses a genetic algorithm (GA) technique for the calculation of both the additional cost of electricity due to the penetration of RES-E technologies as well as the required RES-E levy in the electricity bills in order to fund this RES-E penetration. Also, the procedure enables the estimation of the optimum feed-in-tariff to be offered to future RES-E systems. Also, the overall cost increase in the electricity sector for the promotion of RES-E technologies, for the period 2010–2020, is analyzed taking into account factors, such as, the fuel avoidance cost, the carbon dioxide emissions avoidance cost, the conventional power system increased operation cost, etc. The overall results indicate that in the case of RES-E investments with internal rate of return (IRR) of 10% the cost of integration is higher, compared to RES-E investments with no profit, (i.e., IRR at 0%) by 0.3–0.5 €c/kWh (in real prices), depending on the RES-E penetration level.  相似文献   

5.
The European Union aims to increase bioenergy use. Co-firing biomass with coal represents an attractive near-term option for electricity generation from renewable energy sources (RES-E). This study assesses the near-term technical potential for biomass co-firing with coal in the existing coal-fired power plant infrastructure in the EU27 Member States. The total technical potential for RES-E from biomass co-firing amounts to approximately 50–90 TWh/yr, which requires a biomass supply of approximately 500–900 PJ/yr. The estimated co-firing potential in EU27 amounts to 20–35% of the estimated gap between current RES-E production and the RES-E target for 2010. However, for some member states the national co-firing potential is large enough to fill the national gap. The national biomass supply potential is considerably larger than the estimated biomass demand for co-firing for all member states. About 45% of the estimated biomass demand for co-firing comes from plants located close to the sea or near main navigable rivers and indicates the possibility for biomass import by sea transport. Thus, biomass co-firing has the potential to contribute substantially to the RES-E development in EU27.  相似文献   

6.
Governments at the state (and to a lesser extent, local) level in the United States have adopted an array of policies to promote wind and other types of “green” energy, including solar, geothermal, low-impact hydropower, and certain forms of biomass. However, because of different regulatory environments, energy resource endowments, political interests, and other factors, there is considerable variation among the states in their green power policies. This paper analyzes the contribution to wind power development of several state-level policies (renewable portfolio standards (RPS), fuel generation disclosure rules, mandatory green power options, and public benefits funds), along with retail choice (RET) facilitated by electricity restructuring. The empirical results support existing anecdotal and case studies in finding a positive relationship between RPS and wind power development. We also found that requiring electricity suppliers to provide green power options to customers is positively related to development of wind energy, while there is a negative relationship between wind energy development and RET (i.e., allowing retail customers to choose their electricity source).  相似文献   

7.
According to the EU Directive 2001/77/EC 7% of all electricity production is to be generated from renewable energy sources (RES) in Lithuania in 2010. Electricity production from RES is determined by hydro, biomass and wind energy resources in Lithuania. Further development of hydro power plants is limited by environmental restrictions, therefore priority is given to wind energy development. The aim of this paper is to show estimation of the maximum wind power penetration in the Lithuanian electricity system using such criteria as wind potential, possibilities of the existing electricity network, possible environmental impact, and social and economical aspects. Generalization of data from the meteorological stations and special measurements shows that the highest average wind speed in Lithuanian territory is in the coastal region and at 50 m above ground level reaches 6.4 m/s. In regard to wind resource distribution in this region, arrangement of electricity grid and environment protection requirements, six zones have been determined for wind power plant construction. Calculations have shown that the largest total installed capacity of wind farms, which could cause no significant increase in power transmission expenses, is 170 MW. The threshold, which cannot be passed without capital reconstruction of electricity network, is 500 MW of total capacity of wind farms.  相似文献   

8.
Renewable Portfolio Standards (RPSs) are renewable electricity (RES-E) subsidy mechanisms in which governments mandate how much RES-E should be generated and markets determine the cost of the subsidy needed to generate the RES-E. Two modifications of the RPS that can help support high-cost types of RES-E are banding, where governments mandate higher multiples of RPS tradable certificates for high-cost types of RES-E, and carve-outs, where governments prescribe parts of a RPS target that can be met only by a particular type, or types, of RES-E.  相似文献   

9.
It is sometimes argued that renewables are “expensive”. However, although it is generally true that the private costs of renewable electricity generation are certainly above those of conventional electricity, that statement fails to consider the social benefits provided by electricity from renewable energy sources (RES-E), including environmental and socioeconomic ones. This paper empirically analyses an additional albeit usually neglected benefit: the reduction in the wholesale price of electricity as a result of more RES-E generation being fed into the grid. The case of wind generation in Spain shows that this reduction is greater than the increase in the costs for the consumers arising from the RES-E support scheme (the feed-in tariffs), which are charged to the final consumer. Therefore, a net reduction in the retail electricity price results, which is positive from a consumer point of view. This provides an additional argument for RES-E support and contradicts one of the usual arguments against RES-E deployment: the excessive burden on the consumer.  相似文献   

10.
This article uses computer simulation to anticipate the price dynamics in a market for Tradable Green Certificates (TGCs). These markets have been used in Europe to promote generation of electricity from renewable resources like wind. Similar markets have been proposed in the United States of America (USA) where the certificates are called Renewable Energy Credits (RECs). The certificates are issued to the generating companies for each megawatt-hour of renewable electricity generation. The companies may sell the certificates in a market, and the revenues from certificate sales provide an extra incentive to invest in new generating capacity. Proponents argue that this market-based incentive can be designed to support government mandates for a growing fraction of electricity generation from renewable sources. In the USA, these mandates are set by the states and are known as Renewable Portfolio Standards (RPS).  相似文献   

11.
For the large-scale integration of electricity from renewable energy sources (RES-E), the German system seems to reach its limits. In 2009, the electricity wholesale market experienced serious negative prices at times of high wind and low demand. The feed-in system in Germany consists of a fixed feed-in price, a take-off obligation and a RES priority rule, and in practice only very restrictive use of RES-E curtailment. Exactly the latter is the problem. We argue that the overall performance of the system would improve seriously by lifting the restrictions on the use of voluntary curtailment agreements, while retaining the priority rule as such. Since generators of RES-E can only improve under this system reform, investment conditions improve, leading to higher installed RES-E capacity. This in turn implies that reduced wind output due to curtailment can actually be offset by higher wind output in all periods in which there is no problem.  相似文献   

12.
Despite recent consumption decrease due to recession, European electricity sector is struggling to reach ambitious targets for reductions of greenhouse gas emissions. Our objective is to carry out a macro analysis of the energy mix in two European countries: Belgium and Spain. Life Cycle Assessments are carried for 2005 as well as for seven possible referenced scenarios to reach EU and also national legal objectives at the horizon 2020 and 2030. Ambitious renewable energy sources’ deployment plans can decrease impacts on the environment significantly as those sources replace polluting traditional sources, such as coal/lignite, oil or gas. When concentrating on projections for the future in Spain, results show that a mix with little coal and oil replaced by up to 54% of RES-E energy sources could bring environmental benefits with CO2 emissions equivalent around 0.2 kg per kWh produced (compared with 0.54 kg in 2005). In Belgium, all future scenarios presented include more coal and gas with a limited share of RES-E; those mixes present more environmental harmful impacts (up to 0.56 kg CO2 equivalent). This is why RES-E deployment is crucial as long as it is part of an electricity mix with reduced quantities of traditional fossil fuels.  相似文献   

13.
To increase the use of renewable energy, the Korean government will introduce the Renewable Portfolio Standard (RPS) in 2012. The RPS places responsibility for extra renewable energy costs on the consumers and allows price competition among different renewable sources. Accordingly, this study analyzes through the contingent valuation (CV) the willingness of Korean households to pay more for electricity generated by wind, photovoltaic (PV), and hydropower. Our empirical results show that, although the willingness to pay (or WTP) was highest for wind power and lowest for hydropower, the differences in WTP among the renewable sources were statistically insignificant. This suggests that Korean consumers prefer a renewable portfolio that minimizes power supply costs.The average WTP for all three energy types was KRW 1562.7 (USD 1.350) per month per household, which was approximately 3.7% of the average monthly electricity bill in 2010. This amount represents only 58.2% of what the Korean government allocated in its budget to the new and renewable energy dissemination program in 2010. Thus, our results imply that the promotion of the new and renewable energy dissemination program may be difficult only with the WTP for electricity generated from renewable sources. Specifically, the mean WTP will not support the set-aside dissemination capacity for PV after 2014.  相似文献   

14.
The Irish Government is considering its future targets, policy and programmes for renewable energy for the period beyond 2005. This follows a review in 2003 of policy options that identified a number of different measures to stimulate increased deployment of renewable energy generation capacity. This paper expands this review with an economic analysis of renewable energy price support mechanisms in the Irish electricity generation sector. The focus is on three primary price support mechanisms quota obligations, feed in tariffs and competitive tender schemes. The Green-X computer model is utilised to characterise the RES-E potential and costs in Ireland up until, and including, 2020. The results from this dynamic software tool are used to compare the different support mechanisms in terms of total costs to society and the average premium costs relative to the market price for electricity. The results indicate that in achieving a 20% RES-E proportion of gross electricity consumption by 2020, a tender scheme provides the least costs to society over the period 2006–2020 but only in case there is limited or no strategic bidding. Considering, however, strategic bidding, a feed-in tariff can be the more efficient solution. Between the other two support mechanisms, the total costs to society are highest for feed-in-tariffs (FIT) until 2013, at which point the costs for the quota system begin to rise rapidly and overtake FIT in 2014–2020. The paper also provides a sensitivity analysis of the support mechanism calculations by varying default parameters such as the interim (2010) target, the assumed investment risk levels and the amount of biomass co-firing. This analysis shows that a 2010 target of 15% rather than 13.2% generates lower costs for society over the whole period 2006–2020, but higher costs for the RES-E strategy over the period 2006–2010.  相似文献   

15.
Serbian government has recently introduced the system of feed-in tariffs for electricity generated from renewable sources. The proposed feed-in tariff for photovoltaic electricity is set to 0.23 €/kWh paid for 12 years, with the PV electricity produced after the first 12 years being sold at the grid electricity market price for the rest of the plant lifetime. Although such FIT could have been justified by the small, average retail grid electricity price of just 0.054 €/kWh for Serbian households, the investment appraisal of a real case of 2.82 kWp PV power plant in two Serbian cities of Zlatibor and Negotin, clearly illustrates that the proposed FIT framework is not sufficient to attract investments into PV in Serbia. In the second part of the paper, we have analyzed alternative, more reasonable feed-in tarrif frameworks, with the goal of selecting those able to sustain the PV adoption and diffusion in Serbia.  相似文献   

16.
High fuel prices and concerns about energy security and anthropogenic climate change are encouraging a transition towards a low carbon economy. Although energy policy is typically set at a national level, tools are needed for people to engage with energy policy at regional and local levels, and to guide decisions regarding land use, distributed generation and energy supply and demand. The aim of this paper is to develop a per-capita approach to renewable energy demand and supply within a landscape and to illustrate the key trade-offs between renewable energy, food, (animal) feed and wood production. The chosen case study area (16,000 ha) of Marston Vale, England is anticipated to have a population density midway between that for England and the UK. The daily per capita demand for energy for heat (31 kWh), transport (34 kWh) and electricity (15 kWh) when combined (80 kWh) was seven-fold higher than the combined demand for food (2 kWh), animal feed (6 kWh), and wood (4 kWh). Using described algorithms, the combined potential energy supply from domestic wind and photovoltaic panels, solar heating, ground-source heat, and municipal waste was limited (<10 kWh p−1 d−1). Additional electricity could be generated from landfill gas and commercial wind turbines, but these have temporal implications. Using a geographical information system and the Yield-SAFE tree and crop yield model, the capacity to supply bioethanol, biodiesel, and biomass, food, feed and wood was calculated and illustrated for three land-use scenarios. These scenarios highlight the limits on meeting energy demands for transport (33%) and heat (53%), even if all of the arable and grassland area was planted to a high yielding crop like wheat. The described framework therefore highlights the major constraints faced in meeting current UK energy demands from land-based renewable energy and the stark choices faced by decision makers.  相似文献   

17.
This paper presents a model-based approach, which allows to determine the optimised structure and operation of the EU-15 electricity supply under different political and economic framework conditions, with a focus on the integration of renewable energy sources for electricity generation (RES-E) in the EU-15 countries. The approach is designed to take into account the characteristics of power production from both renewable and conventional sources, including the technological and economic characteristics of existing plants as well as those of future capacity expansion options. Beyond that, fuel supply structures are modelled, as well as the international markets for power and CO2-certificates with their restrictions. Thus, a profound evaluation of the exploitation of mid-term renewable potentials and an assessment of the market penetration of the various renewable power generation technologies under the (normative) premise of a cost-optimised evolution of the power system becomes possible. Results show that a promotion of renewable energies reduces the scarcity of CO2-emission allowances and thus lowers marginal costs of CO2 reduction up to 30% in 2030. Despite the higher overall costs, a diversification of the energy resource base by RES-E use is observed, as primarily natural gas and nuclear fuels are replaced.  相似文献   

18.
Solar and wind energies are likely to play an important role in the future energy generation in Oman. This paper utilizes average daily global solar radiation and sunshine duration data of 25 locations in Oman to study the economic prospects of solar energy. The study considers a solar PV power plant of 5-MW at each of the 25 locations. The global solar radiation varies between slightly greater than 4 kWh/m2/day at Sur to about 6 kWh/m2/day at Marmul while the average value in the 25 locations is more than 5 kWh/m2/day. The results show that the renewable energy produced each year from the PV power plant varies between 9000 MWh at Marmul and 6200 MWh at Sur while the mean value is 7700 MWh of all the 25 locations. The capacity factor of PV plant varies between 20% and 14% and the cost of electricity varies between 210 US$/MWh and 304 US$/MWh for the best location to the least attractive location, respectively. The study has also found that the PV energy at the best location is competitive with diesel generation without including the externality costs of diesel. Renewable energy support policies that can be implemented in Oman are also discussed.  相似文献   

19.
One of the policy goals motivating programs to increase renewable energy investment is that renewable electric generation will help reduce emissions of CO2 as well as emissions of conventional pollutants (e.g., SO2 and NOx). As a policy instrument, Renewable Portfolio Standards (RPS) encourage investments in wind, solar and other generation sources with the goal of reducing air emissions from electricity production. Increased electricity production from wind turbines is expected to displace electricity production from fossil-fired plants, thus reducing overall system emissions. We analyze the emissions impacts of incremental investments in utility-scale wind power, on the order of 1 GW beyond RPS goals, in the Western United States using a utility-scale generation dispatch model that incorporates the impacts of transmission constraints. We find that wind investment in some locations leads to slight increases in overall emissions of CO2, SO2 and NOx. The location of wind farms influences the environmental impact by changing the utilization of transmission assets, which affects the overall utilization of power generation sources and thus system-level emissions. Our results suggest that renewable energy policy beyond RPS targets should be carefully crafted to ensure consistency with environmental goals.  相似文献   

20.
This is a case study of Wang-An Island's energy demands and potential renewable energy sources (RESs). Optimal integration of RESs was simulated using the EnergyPLAN model. The RES evaluation indicated an annual production potential of 458.1 GWh, which substantially surpassed local energy requirements of 22.3 GWh. The potential of yearly electricity generation from RESs of 299.7 GWh apparently outnumbers local electricity demand of 6.4 GWh as well, indicating that 100% renewable electricity would be achievable if surplus electricity can be stored and then reused during an electricity deficit. Electricity production from fully exploited RESs is able to supply only 5.8 GWh of electricity mainly caused by mismatches in times of electricity demand and production. The integrated optimization can supply 3.7 GWh of electricity. A deficit of 2.68 GWh can be compensated for through electricity storage or biomass energy. Although the total amount of generated renewable electricity during the whole year cannot yet satisfy the total amount of yearly demand, electricity storage can help to satisfy most of the electricity needs for the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号