共查询到18条相似文献,搜索用时 60 毫秒
1.
利用低温等离子体(NTP)喷射系统对已捕集颗粒物(PM)的柴油机颗粒捕集器(DPF)进行了低温(100℃)再生试验,并对DPF孔道内不同再生阶段的颗粒沉积物取样分析,通过热重分析仪(TGA)、透射电子显微镜(TEM)及拉曼光谱分析仪探究了DPF孔道内颗粒沉积物的氧化特性、纳米结构及石墨化程度的理化特性变化规律.结果表明:随着NTP再生DPF阶段的推进,DPF孔道内颗粒沉积物中元素碳(EC)组分的最大氧化速率温度(Tmax)和燃尽温度(Te)均明显降低.颗粒物团絮结构中较为薄弱的部分在NTP氧化作用下先断裂,分解成链状结构;初级碳颗粒的平均微晶长度减小,平均微晶层面间距增大.由于NTP活性物质O不断键入PM中,在PM微晶边缘处生成新的含氧官能团,使得PM样品的无序程度及无定型碳含量增加,PM的氧化活性提高. 相似文献
2.
柴油机DPF后颗粒物排放研究 总被引:1,自引:1,他引:1
在一台满足欧Ⅵ排放标准的柴油机上燃用国Ⅴ柴油,带柴油机颗粒捕集器(DPF)进行了欧洲稳态循环(ESC)、欧洲瞬态循环(ETC)、全球统一稳态循环(WHSC)和全球统一瞬态循环(WHTC)试验。试验结果表明:在试验循环的瞬态过程中,发动机排气经过DPF后,较大的排气背压变化率绝对值峰值仍会导致排气中出现颗粒物数量浓度瞬时峰值。ESC循环试验中平均粒径[50nm,80nm]区间内总颗粒物数量排放占全部颗粒物的90%,WHSC中平均粒径[60nm,110nm]区间内总颗粒物数量排放占全部颗粒物的87%,ETC在平均粒径[10nm,70nm]区间内总颗粒物数量排放占全部颗粒物的80%,WHTC在平均粒径[10nm,40nm]和[50nm,60nm]区间内总颗粒物数量排放占全部颗粒物的85%。 相似文献
3.
基于外加热源再生台架和颗粒物加载装置,探究了不同再生温度和碳载量下柴油机颗粒捕集器(DPF)和催化型DPF(CDPF)主动再生时出口气体和颗粒物排放特性.结果表明:催化剂铂(Pt)的涂敷有利于碳黑(PU)的氧化,在相同碳载量条件下,CDPF更易产生温度波峰,且再生效率略高于DPF;DPF再生过程中伴随着较高体积分数的CO排放,且升温阶段会出现一个低浓度的核模态颗粒排放窗口,后续再生阶段几乎无颗粒物释放;CDPF再生过程中几乎没有CO生成,但在再生阶段会伴随着大量的30 nm以下的小颗粒释放,且随着再生温度和碳载量的升高,CDPF出口颗粒物浓度逐渐升高.DPF和CDPF再生时分别具有不同优化窗口,既有利于减少颗粒物排放同时又保持较高的再生效率. 相似文献
4.
柴油机具有良好的动力性和经济性,汽车柴油机已成为发展趋势,但柴油机NOx和颗粒(PM)的高排放成为制约柴油车发展的因素之一。随着机动车排放法规的日益严格,降低NOx和颗粒的排放成为现阶段柴油机汽车的主要研究课题。废气再循环(EGR)技术是现今降低柴油机NOx排放的有效方法之一,应用颗粒捕集器(DPF)可以有效的降低尾气中颗粒的排放。本文介绍了EGR技术和DPF技术的原理、特点,对不同工况下EGR对NOx排放进行了分析,同时对不同工况下颗粒捕集器的再生效率进行了研究,结果表明适宜的EGR率和颗粒再生效率才能同时降低柴油机NOx和PM的排放。 相似文献
5.
DPF主动再生过程颗粒排放特性试验 总被引:1,自引:0,他引:1
通过柴油发动机台架,采用后喷助燃的再生方式研究了主动再生过程中柴油机颗粒捕集器(DPF)出口的颗粒排放特性.结果表明:在主动再生期间,DPF出口颗粒浓度可增加2~3个数量级;在升温过程和再生过程,出口颗粒物数量浓度和粒径分布会因为碳载量和再生温度的共同作用而表现出差异;升温过程中,10 nm左右核模态颗粒物的排放主要由来流中颗粒物的穿透引起;再生过程中,10 nm左右核模态颗粒物的排放主要由碳烟颗粒层氧化反应生成的二次颗粒逃逸引起;整个再生期间,100 nm左右的积聚态颗粒物的排放主要由DPF载体内碳烟颗粒的逃逸引起. 相似文献
6.
介绍了国内外船舶柴油机颗粒物排放标准以及IMO黑炭新规的进展,指出:船舶柴油机颗粒物排放控制将成为船舶柴油机行业的重点研究方向之一;黑炭测量方法的研究非常迫切。介绍了可同时降低柴油机NO_x和颗粒物排放的SCRF技术(即将SCR催化剂涂覆在DPF上)。对高、中、低速船用柴油机排放颗粒粒径和数量浓度的分布特性进行了研究,并根据研究结果建议:在开发船用柴油机颗粒捕集器时,应根据颗粒粒径分布特性,适当调整过滤体微孔直径或增加再生频率。 相似文献
7.
基于外加热源再生性能测试台架,探索了柴油机颗粒捕集器(DPF)分区再生对再生性能的影响及其传热规律。试验结果表明:单区沉积再生时,Ⅰ区沉积和Ⅱ区沉积时容易出现较高的最高温度和最大温度梯度,同时再生效率也较高;沉积区域越偏离轴心,其再生效率越低。双区沉积再生时,沉积区域间距越小且越靠近轴心则越利于再生,再生效率也越高。多区沉积再生时,相比其他沉积情况,当Ⅱ区不沉积颗粒时,最高温度和最大温度梯度较低,同时具有较高的再生效率。DPF内部热量主要聚集在轴心末端位置,当DPF末端发生剧烈再生时热量具有向前传递的趋势。 相似文献
8.
基于自行搭建的柴油机氧化催化器(diesel oxidation catalyst, DOC)+催化型柴油机微粒捕集器(catalytic diesel particulate filter, CDPF)的试验台架,开展了碳化硅(SiC)及堇青石CDPF被动再生平衡点温度试验,并测试了DOC新鲜件及老化件对载体被动再生平衡点温度的影响,对两种材料CDPF进行了低温条件下的被动再生特性试验。试验结果表明:炭载量5 g/L时,SiC CDPF被动再生平衡点温度约为295 ℃,堇青石CDPF约为310 ℃;DOC老化件对SiC CDPF被动再生平衡点温度无明显影响,但会导致其被动再生效率降低;未加装DOC时,SiC CDPF被动再生平衡点温度上升至355 ℃,且会导致载体内部温度轴向及径向上产生较大温差,大大降低其再生效率(仅为5%);炭载量5 g/L、入口温度325 ℃时,SiC CDPF被动再生效率仅为48.9%,再生速率为2.9 g/h,而堇青石CDPF被动再生效率为75.2%,再生速率为11.5 g/h,后者在该温度附近被动再生特性更优。 相似文献
9.
基于轻型柴油机台架,加装一套排气管喷油的主动再生系统,探究催化型柴油机颗粒捕集器(CDPF)在发动机怠速时的主动再生性能。研究发现:CDPF压降受来流空速、温度和碳载量的影响,空速、碳载量越高,压降斜率越大,压降与来流温度呈线性关系,实际情况中碳载量的判断需考虑空速和温度的影响。主动再生时,当空速一定,来流温度越高,达到主动再生目标温度(≧500 ℃)的喷油量越小;入口温度的变化率在1.74-2.20 ℃/(mg/s)范围内,即喷油量每增加10 mg/s,入口温度增加20 ℃左右。CDPF怠速再生时存在快速氧化期,此阶段颗粒物剧烈燃烧,CDPF出口温度会快速上升,同时压降下降明显。通过控制使CDPF入口温度锯齿形上升,有利于降低进出口温度差,再生效率可达90.55%。 相似文献
10.
柴油机颗粒物捕集器(DPF)热再生发生时,其内部温度受DPF碳载量、排气温度和排气流量等影响,在特殊运行工况下具有较强非受控特性.为避免非受控再生引起的DPF失效风险,确保安全和可靠再生,通过降怠速(DTI)再生方式探讨了一种确定DPF安全再生温度的试验方法,得到安全再生温度曲线.针对DPF热再生过程中温度控制的大滞后特性,研究了一种采用发动机排气温度和排气流量作为增益补偿的优化热再生温度控制结构,并进行了控制算法的仿真分析和整车道路试验验证.结果表明:再生过程中对实际排气温度控制的超调量小于3%,稳态控制误差小于20℃,为促进DPF的安全和高效率再生提供了参考. 相似文献
11.
柴油机微粒捕集器再生技术的分析和研究 总被引:2,自引:0,他引:2
柴油机微粒捕集器技术是柴油机微粒排放控制的有效手段,其关键技术是过滤材料和再生方法。详细介绍了几种过滤材料和不同的再生技术,指出了各种技术的特点和主要问题。 相似文献
12.
13.
柴油机微粒陶瓷过滤器再生方法的探讨 总被引:2,自引:2,他引:2
介绍已有的几种柴油机微粒陶瓷过滤器的再生方法的机理,主要包括反吹、电加热、红外再生和催化再生,并对他们的主要优缺点进行了比较分析。在此基础上,对陶瓷过滤器的发展提出了自己的看法。认为将红外再生与催化再生结合使用,是比较可行的一种再生方法。 相似文献
14.
15.
16.
柴油机微粒捕集器关键技术发展现状与分析 总被引:6,自引:0,他引:6
柴油机微粒捕集器研究与应用的关键在于高效而可靠的过滤体材料的开发与再生技术的研究。在介绍各过滤材料技术和再生技术的基础上,对比分析和研究它们的技术特点及主要问题,探讨过滤体材料及其再生技术的发展趋势。 相似文献
17.