共查询到20条相似文献,搜索用时 10 毫秒
1.
Yuhong Chen Zhiyuan Tang Guoqing Zhang Xuemei Zhang Ruizhen Chen Yuangang Liu Qiang Liu 《武汉理工大学学报(材料科学英文版)》2009,24(3):347-353
Mg3(PO4)2-coated Li1.05Ni1/3Mn1/3Co1/3O2 cathode materials were synthesized via co-precipitation method. The morphology, structure, electrochemical performance and
thermal stability were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry(CV),
electrochemical impedance spectroscopy(EIS), charge/discharge cycling and differential scanning calorimeter (DSC). SEM analysis
shows that Mg3(PO4)2-coating changes the morphologies of their particles and increases the grains size. XRD and CV results show that Mg3(PO4)2-coating powder is homogeneous and has better layered structure than the bare one. Mg3(PO4)2-coating improved high rate discharge capacity and cycle-life performance. The reason why the cycling performance of Mg3(PO4)2-coated sample at 55 °C was better than that of room temperature was the increasing of lithium-ion diffusion rate and charge
transfer rate with temperature rising. Mg3(PO4)2-coating improved the cathode thermal stability, and the result was consistent with thermal abuse tests using Li-ion cells:
the Mg3(PO4)2 coated Li1.05Ni1/3Mn1/3Co1/3O2 cathode did not exhibit thermal runaway with smoke and explosion, in contrast to the cells containing the bare Li1.05Ni1/3Mn1/3Co1/3O2.
Funded by the National Natural Science Foundation of China (No. 20273047) 相似文献
2.
Jingjing Liu Weihua Qiu Lingyan Yu Hailei Zhao Tao Li 《北京科技大学学报(英文版)》2007,14(2):173-177
This work was financially supported by the National Natural Science Foundation of China (No.50472093). 相似文献
3.
LiCo1/3Ni1/3Mn1/3O2 was coated by a layer of 1.0 wt% CeO2 via sol-gel method. The bared and coated LiMn1/3Co1/3Ni1/3O2 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammogram (CV) and galvanotactic
charge-discharge test. The results show that the coating layer has no effect on the crystal structure, only coating on the
surface; the 1.0 wt% CeO2-coated LiCo1/3Ni1/3Mn1/3O2 exhibits better discharge capacity and cycling performance than the bared LiCo1/3Ni1/3Mn1/3O2. The discharge capacity of 1.0 wt% CeO2-coated cathode is 182.5 mAh·g−1 at a current density of 20 mA·g−1, in contrast to 165.8 mAh·g−1of the bared sample. The discharge capacity retention of 1.0 wt% CeO2-coated sample after 12 cycles reaches 93.2%, in comparison with 86.6% of the bared sample. CV results show that the CeO2 coating could suppress phase transitions and prevent the surface of cathode material from direct contact with the electrolyte,
thus enhance the electrochemical performance of the coated material. 相似文献
4.
Guo Hua-jun Li Xin-hai Zhang Xin-ming Zeng Su-ming Wang Zhi-xing Peng Wen-jie 《中南工业大学学报(英文版)》2005,12(1):44-49
LiNi0.45Co0.10Mn0.45O2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 °C in air. The structures and characteristics of LiNi0.45Co0.10Mn0.45O2, LiCoO2 and LiMn2O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.45Co0.10Mn0.45O2 has a layered structure with hexagonal lattice. The commercial LiCoO2 has sphere-like appearance and smooth surfaces, while the LiMn2O4 and LiNi0.45Co0.10Mn0.45O2 consist of cornered and uneven particles. LiNi0.45Co0.10Mn0.45O2 has a large discharge capacity of 140.9 mA · h/g in practical lithium ion battery, which is 33.4% and 2.8% above that of
LiMn2O4 and LiCoO2, respectively. LiCoO2 and LiMn2O4 have higher discharge voltage and better rate-capability than LiNi0.45Co0.10Mn0.45O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3% at the 250th cycle. Batteries
with LiMn2O4 or LiNi0.45Co0.10Mn0.45O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes.
Foundation item: Project(50302016) supported by the National Natural Science Foundation of China; Project(2005037698) supported by the Postdoctoral
Science Foundation of China 相似文献
5.
采用水热法合成富锂三元正极材料,探究了最佳包覆比例下Al_2O_3包覆对材料的电化学性能影响.采用扫描电镜(SEM)和X射线衍射仪(XRD)表征了富锂三元正极材料的表面形貌和结构,通过循环伏安(CV)、交流阻抗(EIS)技术分析了材料电化学性的影响因素.结果表明,通过异丙醇铝水解制得了氧化铝包覆层,提高了材料的比容量,稳定了材料的结构. 相似文献
6.
以硝酸铟(In(NO3)3·xH2O)、对苯二甲酸(H2BDC)、六水合硝酸钴(Co(NO3)· 6H2O) 为原料, 首先采用一锅油浴法合成了含有Co2+ 的铟基金属有机框架材料(MOFs) Co2+/CPP-3(In) 材料, 然后在450 ℃ 下焙烧制备Co3O4/In2O3 复合物气敏材料, 将Co3O4/In2O3 复合物的粉体制作成传感器, 并对其气敏性能进行研究。利用扫描电子显微镜和X 射线衍射仪(XRD) 对双金属MOFs Co2+/CPP-3(In) 材料和Co3O4/In2O3 复合物进行表征, 采用静态配气法测试其气敏性能。结果表明, Co3O4/In2O3(nCo : nIn = 0.4 : 1) 样品的形貌保留了其MOFs 前驱体的棒状结构, 棱柱形框架更为突出, 表面呈凹陷状, 棒体中间粗两边细, 六角截面和棒体均布满了孔洞。结合EDX 和XRD
表征结果, Co2+/CPP-3(In) MOFs 前驱体完全转化成Co3O4/In2O3 复合物; Co3O4/In2O3(nCo : nIn = 0.4 : 1) 复合物在
70 ℃ 下对5×10-6 H2S 的气敏性能最优, 响应值达到153, 是同条件下纯备In2O3对H2S 响应值的5 倍, 并且有较好的重复性、选择性和稳定性。 相似文献
7.
采用高温固相法成功制备了不同Na+掺杂浓度的Li1-xNaxNi1/3Co1/3Mn1/3O2锂离子电池正极材料,探究了Na元素掺杂对层状氧化物正极材料结构以及电化学性能的影响。通过X射线粉末衍射仪和扫描电子显微镜表征了材料的结构和形貌,结果表明,当x≤0.3时,样品不会出现其它杂相;当x>0.3时,样品中会出现NaNi1/3Co1/3Mn1/3O2的杂相。同时随着掺杂浓度的增加,样品的阳离子混排度逐渐增加。电化学性能结果表明,少量Na+的掺入可以提高LiNi1/3Co1/3Mn1/3O2在0.2C,0.5C下的放电比容量并增强其循环稳定性,但会损坏材料的倍率性能。 相似文献
8.
共沉积法制备不同含锌量的锂离子电池正极材料Li(Ni1/3Co1/3Mn1/3)O2.采用交流阻抗谱分析该正极材料在首次脱锂过程中的电化学特性以及锌对电极阻抗和锂离子扩散系数的影响.电极阻抗图谱分析结果表明:3.7~4.4V为电极发生电化学反应的电位区间;锌减小了电极材料的SEI膜阻抗和电荷转移阻抗;少量固溶锌提高了锂离子在材料固相中的扩散能力. 相似文献
9.
The corrosion resistance of NiCrAl+(ZrO2+Y2O3) thermal barrier coating, formed with the plasma spraying technique, on the 18 - 8 steel surface was investigated. The phase
structure and morphology of the coating were analyzed by means of X-ray diffraction (XRD) and scanning electron microscopy
(SEM). The electrochemical corrosion behavior of the coating in 1.0 mol/L H2SO4 solution was studied by using electrochemical measurement methods. The results show that the gradient plasma spraying coating
is composed of the NiCrAlY coating and the (ZrO2+Y2O3) top coating, and the coating thickness is 360 μm. The microhardness of coating reaches 1 100 HV. The corrosion resistance of the plasma sprayed coating of the 18 - 8 steel
surface is about 5 times as great as that of the original pattern. The corrosion resistance of the coating is enhanced notably.
Foundation item: Project (5040202140) supported by Scientific Research Common Program of Beijing Municipal Commission of Education 相似文献
10.
采用牺牲模板法合成N掺杂Co3O4纳米片(N-Co NS),通过透射电子显微镜(TEM)、原子力显微镜(AFM)和光电子能谱(XPS)对制备材料的形貌结构、化学组成进行分析,并通过催化活化过一硫酸盐(PMS)降解水中双酚A (BPA)来探究催化剂的催化性能.实验结果表明与Co3O4纳米颗粒(Co NP)、Co3O4纳米片(Co NS)相比,N-Co NS表现出了较高的催化性能.在PMS浓度为2 mmol·L-1、BPA初始质量浓度为50 mg·L-1的反应条件下,N-Co NS在10 min内完全降解水中的BPA,表明N掺杂和二维纳米片结构有利于催化剂性能的提升.通过pH及离子影响实验证实N-Co NS在复杂水化学环境中仍具有较高的活性.此外结合自由基捕获实验和电子顺磁共振(EPR)测试证实反应体系中产生了高氧化活性的羟基自由基和硫酸根自由基. 相似文献
11.
Luminescent properties of BaO-La2O3-B2O3 glasses with dopant 总被引:4,自引:0,他引:4
The luminescent properties of glasses synthesized in air atmosphere by conventional high temperature process were stud{ed. The emissions spectra of Eu^2 and Eu^3 were observed in BaO-La2O3-B2O3-Eu2O3 glasses.The results show that the broad emission peaks at 430 nm correspond to 5d→4f emission transition of Eu^2 , the sharp emission peaks at 592, 616, 650 and 250 nm correspond to 5^D0→1Fj(j=1--4) emission transition of Eu^3 ,respectively, which indicates that the BaO-La2O3a-B2O3-Eu2O3 glass can convert ultraviolet and green omponents of sunlight into blue and red light so as to increase the intensity of blue and red light, respectively. The luminescent in--tensity of Eu^2 increases with increasing the molar ratio of Tb^3 in BaO-La2O3-B2O3-Eu2O3a-Tb4O3 glasses, whereas the luminescent intensity of Eua^3 decreases. So the luminescent intensity of Eu(Ⅲ,Ⅱ) is influenced by Tb^3 .These phenomena can be explained by electron transfer mechanism; Eu^3 (4f6) Tb^3 (4f^8)→Eu^2 (4f′) Tb^4 (4f′). Taking advantage of the luminescent properties of BaO-La2O3-B2O3-Eu2O3 glasses, light-conversion glass for agriculture can be produced. 相似文献
12.
Alumina coated LiNi1/3Mn1/3Co1/3O2 particles were obtained by a simple method of solid state reaction at room temperature. The reaction mechanism of solid state reaction at room temperature was investigated. The structure and morphology of the coating materials were investigated by XRD, SEM and TEM. The electrochemical performances of uncoated and Al2O3-coated LiNi1/3Co1/3Mn1/3O2 cathode materials were studied within a voltage window of 3.00-4.35 V at current density of 30 mA/g. SEM, TEM and EDS analytical results indicate that the surface of LiNi1/3Mn1/3Co1/3O2 particles is coated with very fine Al2O3 composite, which leads to the improved cycle ability though a slight decrease in the first discharge capacity is observed. It is proposed that surface treatment by solid state reaction at room temperature is a simple and effective method to improve the cycle performance of LiNi1/3Co1/3Mn1/3O2 particles. 相似文献
13.
空气分级燃烧条件下Fe2O3对玻璃微珠生成的影响
张远军,王大凯,程星星,王志强*
(山东大学能源与动力工程学院,济南 250061)
摘要:
在空气分级燃烧条件下,研究了Fe2O3对玻璃微珠(MGBs)生成的影响。实验温度为1450℃,以鹤岗烟煤作为实验对象。利用X射线衍射仪(XRD)、灰熔融测试仪、粘度公式和扫描电镜(SEM)对飞灰进行了分析。使用Nano-Measurer 1.2软件测量了玻璃微珠的直径。结果表明,随着鹤岗煤中Fe2O3含量的增加,飞灰中的玻璃相含量先增加后降低。当Fe2O3含量为15%时,玻璃相含量达到最高,为51.26%。灰熔点先降低后升高,而粘度逐渐降低,颗粒逐渐呈球形。随着Fe2O3含量的增加,粒径小于10μm的玻璃微珠比例逐渐增加。从以上结果可以得出结论,Fe2O3的加入有利于玻璃微珠的生成和粒径的减小。
关键词:玻璃微珠;飞灰;Fe2O3;空气分级燃烧
相似文献14.
The stock solutions with cations′concentration of . mol/L were prepared by dissolving ZrOCl.HO Y 《中南工业大学学报(英文版)》2000,7(1):12-14
Nanometer 3Y-TZP/20%Al2O3 (mass fraction) composite powders prepared by the chemical coprecipitation method were pressureless sintered at 1550 °C for
2 h. Effects of calcining temperatures at 800 °C, 1 000 °C, and 1 200 °C on phase structure, relative density, and Vicker’s
hardness of the sintered bodies were studied. The results show that 1 000 °C was the optimal calcining temperature, and the
powder calcined was composed of tetragonal zirconia with the Scherrer crystalline size of 6.3nm. The relative density was
up to 98.5% under pressureless sintering, and the sintered body was t-ZrO2 (without m-ZrO2)+α-Al2O3 with the average size of 0.4 μm.
Foundation item: State Key Laboratory for Powder Metallurgy(No.9706-36)
Biography of the first author: YIN Bang-yao, born in 1966, majoring in advanced ceramic materials. 相似文献
15.
Baijun Yan Jianhua Liu Yunduo Dai Qifeng Shu Zhihua Ren 《北京科技大学学报(英文版)》2007,14(5):395-398
The molar heat capacities of La2Mo209 and La1.9Sr0.1MO209-δ were obtained using the differential scanning calorimetry (DSC) technique in a temperature range from 298 to 1473 K. The DSC curve of La2Mo209 showed an endothermal peak around 834 K corresponding to a first-order monoclinic-cubic phase transition, and the enthalpy change accompanying this phase transition is 5.99 kJ/mol. No evident endothermal peak existed in the DSC curve of La1.9Sr0.1MO209-δ, but a broad thermal anomaly existed in its heat capacity curve at around 832 K. In addition, the heat capacity values of La2Mo209 and La1.9Sr0.1MO209-δ began to decrease at 1196 and 1330 K, respectively. The non-transitional heat capacity values of La2Mo209 and La1.9Sr0.1MO209-δ were formulated using multiple regression analysis in two temperature ranges. 相似文献
16.
通过拉拔法测定纳米Al2O3改性环氧胶黏剂和钢铁之间的附着强度,并结合环氧胶的表面能参数测定以及X射线光电子能谱(XPS)分析,对纳米Al2O3提高环氧胶和钢铁附着力的机理进行研究.表面能测定结果表明,添加纳米Al2O3使环氧胶的极性增加;XPS能谱分析结果表明,当纳米Al2O3质量分数达到2%时,环氧胶中形成新的羧基极性基团;进一步研究发现,当纳米Al2O3质量分数为1%时未形成新的羧基基团,当纳米Al2O3质量分数为8%时单位接触面积上新的羧基基团的数目较2%时少,这与附着强度的变化规律是一致的.因此,纳米Al2O3改性的环氧胶黏剂与钢铁的附着强度的增强是由于Al2O3与环氧胶的相互作用形成了新的羧基极性基团. 相似文献
17.
NiCrAlY+(ZrO2+Y2O3) thermal barrier coating was prepared on the surface of refractory steel 1Cr18Ni9Ti with plasma spraying technique. The phases
and microstructure of the thermal barrier coating were determined by scanning electron microscopy (SEM) and X-ray diffraction
(XRD). The results show that the bonding between thermal barrier coating and substrate is sound. The surface hardness of 1Cr18Ni9Ti
reaches up to 1 000 HV, but that of substrate is only 300 HV. The patterns sprayed with CoNiCrAlY+(ZrO2+Y2O3) ceramic coating have a good heat insulation effect at 800 °C for heat insulation temperature difference reaches 54 °C, which
increases the operating temperature and service life of refractory steel.
Foundation item: Project (5040202140) supported by Scientific Research Common Program of Beijing Municipal Commission of Education 相似文献
18.
针对微生物法覆铜板浸出液中的金属铁离子进行资源化处理,提高覆铜板浸出液的附加值。以水热法处理得到的铁离子溶液为原料,制备八面体和球形的Fe_2O_3/石墨烯复合材料,并将其作为锂离子电池负极材料,组装成扣式电池。结果显示:八面体形貌的Fe_2O_3/石墨烯复合材料的比容量高于球形的,其在100 mA/g电流下循环,首次放电和充电比容量分别高达1 343和970 mAh/g,在47次循环后,其放电及充电比容量分别为769和740 mAh/g。 相似文献
19.
通过水热技术在二维(2D)多层材料Ti_3C_2 (multi-layer Ti_3C_2, ML-Ti_3C_2)的表面及层间原位晶化和生长锐钛矿相TiO_2纳米球,制备出TiO_2/ML-Ti_3C_2复合纳米材料。采用XRD、SEM、氮吸附等表征技术对TiO_2/ML-Ti_3C_2纳米复合材料进行分析表征,并以亚甲基蓝(MB)为模拟污染物,对纯TiO_2和TiO_2/ML-Ti_3C_2复合纳米材料的光催化性能进行了评价。实验结果表明,两种材料的耦合抑制了Ti O_2中光生电子-空穴对的湮灭,延长了复合光催化剂中载流子寿命,拓宽了复合材料的光谱响应范围。在紫外光照射下,以TiO_2/ML-Ti_3C_2复合纳米材料为光催化剂,200 mg/L的MB溶液在20 min内几乎完全脱色,降解率为98.98%。TiO_2/ML-Ti_3C_2纳米复合材料的光催化性能优于纯TiO_2和Ti_3C_2, Ti_3C_2优异的电子传输能力和超强的吸附性能优化了TiO_2的光催化性能。本研究为使用光催化技术处理废水提供了一种新的思路,具有一定的实际应用前景。 相似文献
20.
Sn-doped In2O3 (ITO) nanopowders were prepared in ethanol solvent by solvothermal process. The effects of the solvothermal temperature, coprecipitation pH value and SnO2 content on the products phase and microwave absorption were investigated by X-ray diffractometry and microwave reflectance. ITO nanopowders with cubic structure can be respectively prepared at 250 and 270 ℃ for 6 h. The prepared product is InOOH or the mixture of InOOH and In3Sn4O12 when the solvothermal temperature is below 250℃. With rising solvothermal temperature and prolonging time, the absorption of the ITO powders gradually decreases. The products are ITO nanopowders by coprecipitating at pH=9 or 11, but ITO powders with Sn3O4 at pH=6. The absorption of powders prepared at pH=6 is better than that at any other pH value. The products are all ITO nanopowders and crystal size reduces with increasing SnO2 content. The microwave absorption of ITO nanopowders with SnO2 content of 8% (mass fraction) is the best among samples with different SnO2 contents. 相似文献