首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
A study was carried out to develop a kinetic model of the photocatalytic inactivation of Escherichia coli using different TiO2 catalysts. The model developed is based on a reaction scheme that involves effectively coupling mass‐transfer fluxes between bacteria and catalyst surface on one hand and bacterial degradation reaction on the other. The photocatalytic results were derived from experiments led in a batch reactor under both dark and Ultra Violet (UV) irradiation conditions. Using a reference catalyst, the robustness of the developed model was tested under solar conditions. The experimental data validated the model as successfully able to reproduce evolutions in the viable bacteria concentration in the range of parameters studied without any further adjustment of the kinetic parameters. The model was used to simulate the bacterial degradation kinetics under different working conditions to describe the partitioning of both bacterial adhesion and photocatalytic reaction in the solution to be treated © 2015 American Institute of Chemical Engineers AIChE J, 61: 2532–2542, 2015  相似文献   

2.
BACKGROUND: Although chlorination is an effective and widely employed method of water disinfection, it suffers serious drawbacks such as the formation of toxic chlorinated by‐products. Therefore, other disinfection technologies have been researched and developed, including advanced oxidation. RESULTS: The efficacy of heterogeneous photocatalysis and sonophotocatalysis induced by UV‐A irradiation and low frequency (24–80 kHz) ultrasound irradiation in the presence of TiO2 as the photocatalyst and peracetic acid (PAA) as an additional disinfectant to inactivate E. coli in sterile water was evaluated. PAA‐assisted UV‐A/TiO2 photocatalysis generally leads to nearly complete E. coli inactivation in 10–20 min of contact time with the extent of inactivation depending on the photocatalyst type and loading (in the range 100–500 mg L?1) and PAA concentration (in the range 0.5–2 mg L?1). The simultaneous application of ultrasound and UV‐A irradiation in the presence of TiO2 and PAA prompted further E. coli inactivation. CONCLUSIONS: The proposed advanced disinfection technology offers complete E. coli inactivation at short treatment times and low PAA doses. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
4.
The effect of different chemical parameters on photocatalytic inactivation of E. coli K12 is discussed. Illumination was produced by a solar lamp and suspended TiO2 P-25 Degussa was used as catalyst. Modifications of initial pH between 4.0 and 9.0 do not affect the inactivation rate in the absence or presence of the catalyst. Addition of H2O2 affects positively the E. coli inactivation rate of both photolytic (only light) and photocatalytic (light plus TiO2) disinfection processes. Addition of some inorganic ions (0.2 mmol/l) like HCO3, HPO42−, Cl, NO3 and SO42− to the suspension affects the sensitivity of bacteria to sunlight in the presence and in absence of TiO2. Addition of HCO3 and HPO42− resulted in a meaningful decrease in photocatalytic bactericidal effect while it was noted a weak influence of Cl, SO42− and NO3. The effect of counter ion (Na+ and K+) is not negligible and can modify the photocatalytic process as the anions. Bacteria inactivation was affected even at low concentrations (0.2 mmol/l) of SO42− and HCO3, but the same concentration does not affect the resorcinol photodegradation, suggesting that disinfection is more sensitive to the presence of natural anions than photocatalytic degradation of organic compounds. The presence of organic substances naturally present in water like dihydroxybenzenes isomers shows a negative effect on photocatalytic disinfection. The effect of a mixture of chemical substances on photocatalytic disinfection was also studied by adding to the bacterial suspension nutrient broth, phosphate buffer and tap water.  相似文献   

5.
A recombinant Escherichia coli expressing P450pyr monooxygenase of Sphingomonas sp. HXN‐200 was developed as a useful biocatalyst for regio‐ and stereoselective hydroxylations, with no side reaction and easy cell growth. The resting E. coli cells showed an activity of 4.1 U/g cdw and 9.9 U/g cdw for the hydroxylation of N‐benzylpyrrolidin‐2‐one 1 and N‐benzyloxycarbonylpyrrolidine 3 , respectively, being as active as the wide‐type strain. Biohydroxylation of N‐benzylpyrrolidin‐2‐one 1 with the resting cells gave (S)‐N‐benzyl‐4‐hydroxypyrrolidin‐2‐one 2 in >99% ee and 10.8 mM, a 2.6 times increase of product concentration in comparison with the wild‐type strain. Biohydroxylation of Ntert‐butoxycarbonylpiperidin‐2‐one 5 , N‐benzylpiperidine 7 and Ntert‐butoxycarbonylazetidine 9 with the E. coli cells afforded the corresponding 4‐hydroxypiperidin‐2‐one 6 , 4‐hydroxypiperidine 8 , and 3‐hydroxyazetidine 10 in 14 mM, 17 mM, and 21 mM, respectively. Moreover, hydroxylation of (−)‐β‐pinene 11 with the recombinant E. coli cells showed excellent regio‐ and stereoselectivity and gave (1R)‐trans‐pinocarveol 12 in 82% yield and 4.1 mM, which is over 200 times higher than that obtained with the best biocatalytic system known thus far. The recombinant strain was also able to hydroxylate other types of substrates with unique selectivity: biohydroxylation of norbornane 13 gave exo‐norbornaeol 14 , with exo/endo selectivity of 95%; tetralin 15 and 6‐methoxytetralin 17 were hydroxylated at the non‐activated 2‐position, for the first time, with regioselectivities of 83–84%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号