首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A time-discontinuous Galerkin space–time finite element method is formulated for the exterior structural acoustics problem in two space dimensions. The problem is posed over a bounded computational domain with local time-dependent radiation (absorbing) boundary conditions applied to the fluid truncation boundary. Absorbing boundary conditions are incorporated as ‘natural’ boundary conditions in the space–time variational equation, i.e. they are enforced weakly in both space and time. Following Bayliss and Turkel, time-dependent radiation boundary conditions for the two-dimensional wave equation are developed from an asymptotic approximation to the exact solution in the frequency domain expressed in negative powers of a non-dimensional wavenumber. In this paper, we undertake a brief development of the time-dependent radiation boundary conditions, establishing their relationship to the exact impedance (Dirichlet-to-Neumann map) for the acoustic fluid, and characterize their accuracy when implemented in our space–time finite element formulation for transient structural acoustics. Stability estimates are reported together with an analysis of the positive form of the matrix problem emanating from the space–time variational equations for the coupled fluid-structure system. Several numerical simulations of transient radiation and scattering in two space dimensions are presented to demonstrate the effectiveness of the space–time method.  相似文献   

2.
A meshfree computational method is proposed in this paper to solve Kirchhoff plate problems of various geometries. The deflection of the thin plate is approximated by using a Hermite‐type radial basis function approximation technique. The standard Galerkin method is adopted to discretize the governing partial differential equations which were derived from using the Kirchhoff's plate theory. The degrees of freedom for the slopes are included in the approximation to make the proposed method effective in enforcing essential boundary conditions. Numerical examples with different geometric shapes and various boundary conditions are given to verify the efficiency, accuracy, and robustness of the method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The inverse conductivity problem is the mathematical problem that must be solved in order for electrical impedance tomography systems to be able to make images. Here we show how this inverse conductivity problem is related to a number of other inverse problem. We then explain the workings of an algorithm that we have used to make images from electrical impedance data measured on the boundary of a circle in two dimensions. This algorithm is based on the method of least squares. It takes one step of a Newton's method, using a constant conductivity as an initial guess. Most of the calculations can therefore be done analytically. The resulting code is named NOSER, for Newton's One-Step Error Reconstructor. It provides a reconstruction with 496 degrees of freedom. The code does not reproduce the conductivity accurately (unless it differs very little from a constant), but it yields useful images. This is illustrated by images reconstructed from numerical and experimental data, including data from a human chest.  相似文献   

4.
The Element free Galerkin method, which is based on the Moving Least Squares approximation, requires only nodal data and no element connectivity, and therefore is more flexible than the conventional finite element method. Direct imposition of essential boundary conditions for the element free Galerkin (EFG) method is always difficult because the shape functions from the Moving Least Squares approximation do not have the delta function property. In the prior literature, a direct collocation of the fictitious nodal values & u circ; used as undetermined coefficients in the MLS approximation, u h (x) [u h (x)=Φ·& u circ;], was used to enforce the essential boundary conditions. A modified collocation method using the actual nodal values of the trial function u h (x) is presented here, to enforce the essential boundary conditions. This modified collocation method is more consistent with the variational basis of the EFG method. Alternatively, a penalty formulation for easily imposing the essential boundary conditions in the EFG method with the MLS approximation is also presented. The present penalty formulation yields a symmetric positive definite system stiffness matrix. Numerical examples show that the present penalty method does not exhibit any volumetric locking and retains high rates of convergence for both displacements and strain energy. The penalty method is easy to implement as compared to the Lagrange multiplier method, which increases the number of degrees of freedom and yields a non-positive definite system matrix.  相似文献   

5.
Nanoscale fatigue damage simulations using molecular dynamics were performed in nickel and copper single crystals. Cyclic stress–strain curves and fatigue crack growth were investigated using a middle-tension (MT) specimen with the lateral sides allowing periodic boundary conditions to simulate a small region of material as a part of a larger component. The specimen dimensions were in the range of nanometers, and the fatigue loading was strain controlled under constant and variable amplitude. Four crystal orientations, [111], [100], [110] and [101] were analyzed, and the results indicated that the plastic deformation and fatigue crack growth rates vary widely from one orientation to another. Under increasing strain amplitude loading, nickel nanocrystals experienced a large amount of plastic deformation causing at least in one orientation, [101], out-of-plane crack deviation in a mixed mode I+ II growth. Under constant amplitude loading, the fatigue cracks were a planar mode I type. Double slip is observed for some orientations, while for others, many more slip systems were activated causing a more evenly distributed plastic region around the crack tip. A comparative analysis revealed that small cracks grow more rapidly in copper than in nickel single crystals.  相似文献   

6.
This paper examines the efficient integration of a Symmetric Galerkin Boundary Element Analysis (SGBEA) method with multi‐zone resulting in a fully symmetric Galerkin multi‐zone formulation. In a previous approach, a Galerkin multi‐zone method was developed where the interfacial nodes are assigned degrees of freedom globally so that the displacement and traction continuity across the zonal interfaces are addressed directly. However, the method was only block symmetric. In the present paper, two new approaches are derived. In the first approach, the degrees of freedom for a particular zone are assigned locally, independent of the other zones. The usual linear set of equations, from the symmetric Galerkin approach, are augmented with an additional set of equations generated by the Galerkin form of hypersingular boundary integrals along the interfaces. Zonal continuity is imposed externally through Lagrange's constraints. This approach is also only block symmetric. The second approach derived from the first, uses the continuity constraints at the zonal assembly level to achieve full symmetry. These methods are compared to collocation multi‐zone and an earlier formulation, on two elasticity problems from the literature. It was found that the second method is much faster than the collocation method for medium to large scale problems, primarily due to its complete symmetry. It is also observed that these methods spend marginally more time on integration than the previous Galerkin multi‐zone method but are better suited to parallel processing. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a framework for r‐adaptive quasi‐static configurational force (CF) brittle crack propagation, cast within a discontinuous Galerkin (DG) symmetric interior penalty (SIPG) finite element scheme. Cracks are propagated in discrete steps, with a staggered algorithm, along element interfaces, which align themselves with the predicted crack propagation direction. The key novelty of the work is the exploitation of the DG face stiffness terms existing along element interfaces to propagate a crack in a mesh‐independent r‐adaptive quasi‐static fashion, driven by the CF at the crack tip. This adds no new degrees of freedom to the data structure. Additionally, as DG methods have element‐specific degrees of freedom, a geometry‐driven p‐adaptive algorithm is also easily included allowing for more accurate solutions of the CF on a moving crack front. Further, for nondeterminant systems, we introduce an average boundary condition that restrains rigid body motion leading to a determinant system. To the authors' knowledge, this is the first time that such a boundary condition has been described. The proposed formulation is validated against single and multiple crack problems with single‐ and mixed‐mode cracks, demonstrating the predictive capabilities of the method.  相似文献   

8.
A method of reducing the number of degrees of freedom and the overall computing times in finite element method (FEM) has been devised. The technique is valid for linear problems and arbitrary temporal variation of boundary conditions. At the first stage of the method standard FEM time stepping procedure is invoked. The temperature fields obtained for the first few time steps undergo statistical analysis yielding an optimal set of globally defined trial and weighting functions for the Galerkin solution of the problem at hand. Simple matrix manipulations applied to the original FEM system produce a set of ordinary differential equations of a dimensionality greatly reduced when compared with the original FEM formulation. Using the concept of modal analysis the set is then solved analytically. Treatment of non‐homogeneous initial conditions, time‐dependent boundary conditions and controlling the error introduced by the reduction of the degrees of freedom are discussed. Several numerical examples are included for validation of the approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
This paper considers the problem of scattering of a time-harmonic acoustic incident wave by a bidimensional hard obstacle. The numerical solution to this problem is found using a Galerkin wave boundary integral formulation whereby the functional space is built as the product of conventional low order piecewise polynomials with a set of plane waves propagating in various directions. In this work we improve the original method by presenting new strategies when dealing with irregular meshes and corners. Numerical results clearly demonstrate that these improvements allow the handling of scatterers with complicated geometries while maintaining a low discretization level of 2.5–3 degrees of freedom per full wavelength. This makes the method a reliable tool for tackling high-frequency scattering problems.  相似文献   

10.
在考虑载人汽车7+k自由度模型的基础上,根据模态控制方法与模糊控制方法各自特点,将两者相结合,提出模态模糊控制的概念,并对模态模糊控制方法进行介绍;在模态空间实施模糊控制可避免系统自由度数量较多而作动器数量较少的矛盾,同时也可利用模糊控制方法的优点,使控制律的设计适应非线性较强、存在时滞、数学模型无法精确建立的汽车受控系统;还可利用模态控制原理,选择不同模态进行模糊控制。结合模态控制方法和最优控制理论,进一步讨论模态模糊控制方法中确定各种模态模糊变量论域的方法,针对汽车7+4自由度模型,分别给出模态位移、模态速度及模态控制力的论域。最后,对一具有磁流变阻尼器的汽车11自由度模型的振动控制进行数字仿真,结果表明模态模糊控制方法有良好稳定的控制效果。  相似文献   

11.
In this paper, we derive an improved element-free Galerkin (IEFG) method for two-dimensional linear elastodynamics by employing the improved moving least-squares (IMLS) approximation. In comparison with the conventional moving least-squares (MLS) approximation function, the algebraic equation system in IMLS approximation is well-conditioned. It can be solved without having to derive the inverse matrix. Thus the IEFG method may result in a higher computing speed. In the IEFG method for two-dimensional linear elastodynamics, we employed the Galerkin weak form to derive the discretized system equations, and the Newmark time integration method for the time history analyses. In the modeling process, the penalty method is used to impose the essential boundary conditions to obtain the corresponding formulae of the IEFG method for two-dimensional elastodynamics. The numerical studies illustrated that the IEFG method is efficient by comparing it with the analytical method and the finite element method.  相似文献   

12.
We analyze several possibilities to prescribe boundary conditions in the context of immersed boundary methods. As basic approximation technique we consider the finite element method with a mesh that does not match the boundary of the computational domain, and therefore Dirichlet boundary conditions need to be prescribed in an approximate way. As starting variational approach we consider Nitsche's methods, and we then move to two options that yield non‐symmetric problems but that turned out to be robust and efficient. The essential idea is to use the degrees of freedom of certain nodes of the finite element mesh to minimize the difference between the exact and the approximated boundary condition. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The Helmholtz equation always suffers the so-called ‘pollution effect’, which is directly related to the dispersion for high wavenumber. The element-free Galerkin method (EFGM) has been successfully applied to acoustic problems and significantly reduced the dispersion error. Unfortunately, it is computationally expensive. In this paper, a two-dimensional (2-D) dispersion analysis is performed on the meshless Galerkin least-square (MGLS) method. This method is based on the EFGM at the domain boundary and the least-square method in the interior. Numerical examples on an L-shaped cavity demonstrate that while retaining the accuracy of the EFGM, the computational cost can be significantly reduced.  相似文献   

14.
In this paper, we will present a new approach for solving boundary integral equations with panel clustering. In contrast to all former versions of panel clustering, the computational and storage complexity of the algorithm scales linearly with respect to the number of degrees of freedom without any additional logarithmic factors. The idea is to develop alternative formulations of all classical boundary integral operators for the Laplace problem where the kernel function has a reduced singular behaviour. It turns out that the application of the panel-clustering method with variable approximation order preserves the asymptotic convergence rate of the discretisation and has significantly reduced complexity.  相似文献   

15.
The method of fundamental solutions (MFS) may be seen as one of the simplest methods for solving boundary value problems for some linear partial differential equations (PDEs). It is a meshfree method that may present remarkable results with a small computational effort. The meshfree feature is particularly attractive when we need to change the shape of the domain, which occurs, for instance, in shape optimization and inverse problems. The MFS may be viewed as a Trefftz method, where the approximations have the advantage of verifying the linear PDE, and therefore we may bound the inner error from the boundary error, in well-posed problems. A main counterpart for these global numerical methods, that avoid meshes, are the associated linear systems with dense and ill conditioned matrices. In these methods a sort of uncertainty principle occurs—we cannot get both accurate results and good conditioning—one of the two is lost. A specific feature of the MFS is some freedom in choosing the source points. This might lead to excellent results, but it may also lead to poor results, or even to impossible approximations. In this work we will discuss the choice of source points and propose a choice along the discrete normal direction (following [Alves CJS, Antunes PRS. The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes. Comput Mater Continua 2005;2(4):251–66]), with a possible local criterion to define the distance to the boundary. We will also address some extensions that connect the asymptotic MFS to other methods by choosing the sources on a circle/sphere far from the boundary. We also present a direct connection between the approximation based on radial basis functions (RBF) and the MFS approximation in a higher dimension. This increase in dimension was somehow already present in a previous work [Alves CJS, Chen CS. A new method of fundamental solutions applied to non-homogeneous elliptic problems. Adv Comput Math 2005;23:125–42], where the frequency was used as the extra dimension. The free parameters in RBF inverse multiquadrics 2D approximation correspond in fact to the source point distance to the boundary plane in a Laplace 3D setting. Some numerical simulations are presented to illustrate theoretical issues.  相似文献   

16.
The paper outlines a numerical procedure for the finite element solution of convective diffusion problems with significant convective terms using conventional (not upwinded) Galerkin methods in connection with ‘boundary-layer type’ elements. The underlying argument in the sequel is that the poor stability properties of conventional Galerkin methods are caused by the insufficient approximation of eigensolutions. These are located at some sections of the boundary and are only present within a generally very thin layer. Consequently, the identification of these layers and the satisfactory approximation of the eigensolutions are necessary and totally sufficient for a satisfactory solution. In the following we intend to present this procedure, its theoretical background and selected numerical results.  相似文献   

17.
The element-free Galerkin (EFG) method is a promising method for solving partial differential equations in which trial and test functions employed in the discretization process result from moving least-squares (MLS) approximation. In this paper, by employing the improved moving least-squares (IMLS) approximation, we derive formulae for an improved element-free Galerkin (IEFG) method for the modified equal width (MEW) wave equation. A variation of the method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method. Therefore, the IEFG method may result a better computing speed. In this paper, the effectiveness of the IEFG method for modified equal width (MEW) wave equation is investigated by numerical examples.  相似文献   

18.
We present a high‐order hybridizable discontinuous Galerkin method for solving elliptic interface problems in which the solution and gradient are nonsmooth because of jump conditions across the interface. The hybridizable discontinuous Galerkin method is endowed with several distinct characteristics. First, they reduce the globally coupled unknowns to the approximate trace of the solution on element boundaries, thereby leading to a significant reduction in the global degrees of freedom. Second, they provide, for elliptic problems with polygonal interfaces, approximations of all the variables that converge with the optimal order of k + 1 in the L2(Ω)‐norm where k denotes the polynomial order of the approximation spaces. Third, they possess some superconvergence properties that allow the use of an inexpensive element‐by‐element postprocessing to compute a new approximate solution that converges with order k + 2. However, for elliptic problems with finite jumps in the solution across the curvilinear interface, the approximate solution and gradient do not converge optimally if the elements at the interface are isoparametric. The discrepancy between the exact geometry and the approximate triangulation near the curved interfaces results in lower order convergence. To recover the optimal convergence for the approximate solution and gradient, we propose to use superparametric elements at the interface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The orientation dependence of slowness and electromechanical coupling coefficients of 0.92Pb(Zn/sub 1/3/Nb/sub 2/3/)O/sub 3/-0.08PbTiO/sub 3/ (PZN-8%PT) domain engineered single crystal was analyzed based on the measured complete set of elastic, piezoelectric, and dielectric constants. There exist one quasi-longitudinal, one quasi-shear, and one pure shear wave in each of the [100]-[010], [010]-[001], and [001]-[110] planes. The slowness of the quasi-shear wave exhibits strong anisotropy in all three planes, and the coupling coefficient k/sub 33/ and k/sub 31/ reach their maximum in [001] and [110] directions of cubic axis, respectively. Because the composition of the PMN-8%PT system is very close to the morphotropic phase boundary, the extraordinary large piezoelectric coefficients d/sub 31/ and d/sub 33/, and high coupling coefficient k/sub 33/ are very sensitive to compositional variation. We have performed error analysis and proposed an improved characterization scheme to derive a complete data set with best consistency.  相似文献   

20.
We present a hybridized discontinuous Petrov–Galerkin (HDPG) method for the numerical solution of steady and time‐dependent scalar conservation laws. The method combines a hybridization technique with a local Petrov–Galerkin approach in which the test functions are computed to maximize the inf‐sup condition. Since the Petrov–Galerkin approach does not guarantee a conservative solution, we propose to enforce this explicitly by introducing a constraint into the local Petrov–Galerkin problem. When the resulting nonlinear system is solved using the Newton–Raphson procedure, the solution inside each element can be locally condensed to yield a global linear system involving only the degrees of freedom of the numerical trace. This results in a significant reduction in memory storage and computation time for the solution of the matrix system, albeit at the cost of solving the local Petrov–Galerkin problems. However, these local problems are independent of each other and thus perfectly scalable. We present several numerical examples to assess the performance of the proposed method. The results show that the HDPG method outperforms the hybridizable discontinuous Galerkin method for problems involving discontinuities. Moreover, for the test case proposed by Peterson, the HDPG method provides optimal convergence of order k + 1. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号