首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
催化裂化汽油中特征硫化物噻吩的催化氧化脱硫   总被引:2,自引:1,他引:1       下载免费PDF全文
以负载金属铈的分子筛为催化剂,在H2O2-HCOOH体系中,对催化裂化(FCC)汽油中特征硫化物噻吩(C4H4S)的正庚烷溶液进行了氧化脱硫研究。考察了氧化剂用量、溶剂、氧化时间、氧化温度、相转移剂等因素对噻吩脱除效果的影响,并对对噻吩的氧化反应历程进行了初步的探讨。实验结果表明:以负载金属铈的分子筛为催化剂,在反应温度50℃,反应60min, H2O2:S=10:1(mol/mol),H2O2:HCOOH=1:1(V/V)的条件下,正庚烷溶液C4H4S的脱除率达到了78.2%,加入乳化剂OP可使C4H4S的脱硫率达到94.5%,但四丁基溴化胺(TBAB)的加入使氧化后的样品中出现了噻吩的溴代产物。  相似文献   

2.
汽油和柴油氧化脱硫技术进展   总被引:10,自引:0,他引:10  
综述了国内外汽油、柴油氧化脱硫技术进展。介绍了选择性氧化脱硫、超声波氧化脱硫、光催化氧化脱硫、等离子体液相氧化脱硫、生物氧化脱硫、电化学氧化脱硫等。认为进一步探讨脱硫机理,提高脱硫效率和油品收率,降低脱硫成本,是氧化脱硫技术研究的重要方向。  相似文献   

3.
姬乔娜 《广州化工》2013,(22):95-96,113
Ce基催化剂因其具有较强的储放氧功能,在催化氧化反应中有着广泛的应用。而其用于催化氧化脱除柴油中有机硫化物的研究,并未有报道。本文用负载法制备Ce、La高丰度稀土元素的催化剂,用于催化分子氧氧化脱除柴油中硫化物,旨在分析其催化氧化效果。结果表明:反应温度越高其催化氧化活性越大,柴油脱硫率最高达70%以上。  相似文献   

4.
改性活性炭吸附脱除柴油中的硫化物   总被引:1,自引:0,他引:1  
刘娟  王洪国  廖克俭 《应用化工》2013,(1):102-104,109
采用氧化剂对椰壳活性炭进行改性,研究了改性活性炭吸附柴油中硫化物性能,利用氮吸附、XRD和Boehm滴定法系统的表征了吸附剂改性前后的变化。结果表明,改性后的活性炭比表面积、孔容有所下降,但是表面酸性官能团有很大的提高;改性后的活性炭表面负载的金属离子主要以Fe3+和Ni2+的形式存在。脱硫实验表明,经0.3 mol/L的硝酸铁和0.2 mol/L的硝酸镍复配浸渍12 h,在300℃干燥6 h后,在500℃的氮气氛围中焙烧3 h,制得的Ni-Fe/HAC的脱硫效果最优,其穿透容量可以达到3.38 mg S/g。静态吸附12 h后,其脱硫率可达58%。  相似文献   

5.
论述了氧化法脱除汽油和柴油中有机硫技术进展。介绍了过氧化物氧化脱硫、臭氧氧化脱硫、氧气氧化脱硫、超声波氧化脱硫、生物氧化脱硫、电催化氧化脱硫和光化学氧化脱硫等,分析了不同方法的优势及应用现状。今后氧化脱硫技术研究的重要方向是进一步研究脱硫机理、提高脱硫率和降低成本。  相似文献   

6.
随着国内燃料油标准日益严格,催化氧化脱硫技术被使用于柴油深度脱硫研究。实验合成新型杂多酸季铵盐催化剂,催化脱除柴油中硫化物的研究,实验中使用单因素对脱硫工艺进行优化,得出:使用[BMIM]2[CTMA]PMo12O40催化剂,在(n(C)/n(S)=0.06、n(H2O2)/n(S)=5、T=60℃、t=40 min、萃取剂(乙腈)=5 mL)反应条件下,柴油的脱硫率高达93.1%,硫含量从原来的369μg/g降至25.5μg/g。  相似文献   

7.
《化学工程》2016,(7):1-5
脱硫剂由Pd/C、异丙醇、氢氧化钠和去离子水组成。采用正辛烷作溶剂分别配制以噻吩、二苯并噻吩、4,6-二甲基二苯并噻吩为模型硫化物的模拟油。采用N2吸附等温线、SEM、TEM、XRD对Pd/C结构特征进行了表征。表征结果显示Pd/C的比表面积为1 836 m~2/g,孔容为0.98 cm~3/g,根据其I型吸附等温线可知其绝大部分孔为微孔。由Pd/C的SEM和TEM图可以看出Pd的纳米颗粒比较均匀地分布于碳材料上,Pd金属纳米粒子的直径约3—5 nm。XRD图显示Pd的纳米晶体颗粒的(111)、(200)、(220)和(311)典型晶面的存在,并且负载的Pd大多数是存在于活性炭孔内。采用间歇反应器在60℃温度下,脱硫剂可在3 h内将燃油中硫的质量分数从250 mg/kg降到10 mg/kg以下,从而得到低硫燃油,脱硫剂在FCC汽油中得到较好的验证。Pd/C既作为原位产生过氧化氢的催化剂,又是吸附砜类硫化物的吸附剂,洗脱再生后仍具有较好的催化和脱硫性能。  相似文献   

8.
相转移催化氧化脱除噻吩的应用研究   总被引:2,自引:0,他引:2  
以噻吩溶液为模型化合物,应用季铵盐类相转移催化剂,对FCC汽油相转移催化氧化-萃取脱硫工艺进行了系统研究。考察了相转移催化剂、氧化时间、氧化温度、氧化剂加入量等工艺条件对脱硫率的影响。研究结果表明,季铵盐相转移催化剂的阴阳离子对脱硫率有重要影响。以四丁基溴化铵(TBAB)为相转移催化剂,反应温度40℃,反应时间150 min,氧化剂用量为n(H2O2):n(S)=4,萃取剂为二甲基亚砜时脱硫率可达93.1%。  相似文献   

9.
李瑞丽  刘瑛  李波 《化工进展》2013,32(8):1813-1817
采用双氧水-甲酸对重油催化裂化柴油进行氧化,然后使用N,N-二甲基甲酰胺萃取剂萃取脱硫。研究了在反应体系中氧化时间、氧化温度以及双氧水与甲酸的加入量对氧化脱硫率的影响,并考察了加入分散剂Span-80的效果。最终得到双氧水-甲酸-Span-80体系最佳氧化条件:分散剂Span-80为2.0%,双氧水为36%,甲酸为32%,氧化温度为60 ℃,氧化时间为50 min。分散剂Span-80的加入可以大大提高双氧水-甲酸体系对重油催化裂化柴油的氧化脱硫能力。在双氧水-甲酸体系最佳条件下氧化萃取脱硫率为85.58%,双氧水-甲酸-Span-80体系脱硫率高达98.27%,重油催化裂化柴油的硫含量由12 500 mg/L降至216 mg/L。气相色谱结果显示,氧化脱硫后重油催化裂化柴油中的噻吩、苯并噻吩及其衍生物基本被脱除,有少量二苯并噻吩及其衍生物需要进一步脱除。  相似文献   

10.
蒋清梅 《广东化工》2012,39(9):112-113,105
研究了以凹凸棒石为载体添加活性组分制备的脱硫剂,脱除FCC(催化裂化)汽油中的硫化物。通过正交实验研究了焙烧温度、酸化浓度、活性组分用量对汽油脱硫剂的影响,同时对脱硫剂用量及再生进行了研究。结果表明在焙烧温度500℃、酸化浓度8%、活性组分为1%,脱硫剂用量为1 g/30 mL汽油(即脱硫剂为5%)时,脱硫率能够达到99.37%。  相似文献   

11.
柴油空气催化氧化脱硫的探索研究   总被引:15,自引:4,他引:15  
为克服柴油加氢脱硫技术投资大、操作条件苛刻及污染严重等问题,提出一种空气催化氧化脱硫方法。考察了催化剂种类及其用量、催化氧化温度、时间、空气流速等因素对脱硫效果的影响。实验结果表明,选用粉状白土作脱硫催化剂,在空气流量为1600 ml/min和160 ℃下反应30 min,可将原料油中硫的质量分数从1033×10-6降到381×10-6,脱硫率达63.12%。  相似文献   

12.
综述了活性炭作为吸附剂和催化剂在柴油深度脱硫方面应用的新进展。通过表面热氧化和负载金属离子对活性炭表面进行化学性能改性,有效提高对柴油中噻吩类硫化物的吸附性能。活性炭作为催化剂,能有效催化过氧化氢和氧化柴油中的噻吩类硫化物而达到催化氧化脱硫。活性炭在柴油深度脱硫方面具有广阔的应用前景,但要真正实现其在脱硫上的工业化应用,尚需加强其表面化学性能改性、再生、吸附和催化氧化机理等方面的研究。  相似文献   

13.
催化汽油氧气氧化脱硫的反应动力学   总被引:1,自引:0,他引:1       下载免费PDF全文
以氧气作为氧化剂,开展催化汽油氧化萃取脱硫实验及氧化动力学研究。实验结果表明,氧气氧化萃取脱硫对催化汽油具有较好的脱硫效果;随着相转移催化剂用量增加、温度提高、氧气分压增大、时间延长、水与汽油体积比增大,汽油脱硫率持续提高,而汽油收率呈现降低的变化趋势。根据反应动力学方程和萃取相平衡原理,确定了脱硫率和汽油收率模型,并开展模型参数估值、统计检验和预测分析。研究结果显示,所建模型具有较高的模拟精度,预测结果与脱硫实验结果的变化趋势相同。  相似文献   

14.
催化裂化汽油催化氧化及萃取脱硫的研究   总被引:1,自引:0,他引:1  
任杰  杨文叶  徐磊  慎炼 《工业催化》2008,16(10):113
以分子氧为氧化剂,将催化氧化与萃取分离相结合,开展催化汽油氧化萃取脱硫研究。结果表明,与直接萃取相比,汽油经过氧化及溶剂萃取,汽油脱硫率有所提高,并且随着氧化温度的提高而增大,氧化过程对催化汽油脱硫有贡献。催化剂能够加速硫化物氧化反应,几种催化剂的汽油脱硫率从大到小顺序为:氧化铈>碳酸锰或四硼酸钠或氧化锌>硼酸或过硼酸钠。使用氧化锌或碳酸锰催化剂时,随着催化剂用量的增加,汽油脱硫率总体呈现降低的变化趋势。以硼酸为催化剂时,脱硫率随着催化剂用量的增加先增加后降低,认为催化汽油中硫化物的氧化反应符合连串反应机制。  相似文献   

15.
低温等离子体催化氧化柴油脱硫工艺的研究   总被引:1,自引:0,他引:1  
利用浸渍法制备了Cu~(2+)/Al_2O_3、Ni-Mn为主要组分的催化剂,并用其为催化剂、市售0~#柴油为对象探讨了等离子体催化氧化-萃取脱硫上艺.结果表明该催化剂的催化效果优于其他催化剂.当电极两端电压为17 kV、驱动频率为15 kHz、催化剂用量为5%质量分数、氧化时间为20 min、萃取剂为甲醇、剂/油体积比为1:1、萃取时间为15 min时,一级脱硫率可达到73.8%.  相似文献   

16.
汽油电化学催化氧化脱硫   总被引:8,自引:0,他引:8       下载免费PDF全文
王文波  汪树军  刘红研  张伟  王义刚 《化工学报》2006,57(12):3033-3039
采用一种新型的电化学催化氧化方法,研究了在碱性电解体系中汽油脱硫的规律.结果表明:在碱性电解体系中汽油电解催化氧化脱硫的理论分解电压范围为0.5~1.5 V;适宜的电解条件为:分解电压1.90 V,碱液浓度1.0 mol·L-1,油/电解液进料体积比1/3,搅拌速度300 r·min-1,适宜温度50℃,电流密度155 mA·cm-2,进料流速200 ml·min-1.在此条件下油品硫含量从310 μg·g-1下降到120 μg·g-1左右,且对油品的主要性质没有影响.  相似文献   

17.
In this work, the effective ultra-deep catalytic adsorptive desulfurization (CADS) using titanium-silica gel (Ti-SG) adsorbent at low Ti loading (<1 wt.%) was investigated. The superior CADS capacity (37.3 mg-S/g-A) and high TOF value (432 h−1) for dibenzothiophene (DBT) of Ti-SG adsorbent were achieved at Ti loading of 0.6% with high dispersion and low titanium coordination. The rate equation of catalytic DBT oxidation was described as , where the TiOOR was determined as the intermediate to enable the DBT oxidation to form the corresponding sulfone (DBTO2). The effectiveness of CADS using Ti-SG adsorbents was verified in real diesels with varied sulfur concentrations and O/S ratios in the dynamic adsorption and multicycle regeneration. This work provides insights on using low-cost bifunctional catalytic adsorbents at low Ti loadings for effective CADS to realize ultra-deep desulfurization of transportation fuels.  相似文献   

18.
催化汽油氧气氧化及萃取脱硫的实验结果表明,随着催化剂用量增加、氧气分压增大、氧化温度提高、氧化时间延长,汽油脱硫率均持续增大,而汽油收率逐渐降低.对脱硫率和收率影响程度从大到小的顺序均为氧化温度>催化剂用量>氧气分压>氧化时间.随着催化剂水溶液重复使用次数增加,汽油脱硫率呈现先降低然后趋于稳定,而汽油收牢先增人后趋于不变.催化汽油经过催化剂用量3.0 g、温度140℃、氧气分压2.0 MPa、时间40 min条件的氧化处理,接着进行水洗及萃取,脱硫率和收率分别为91.57%和67.66%.  相似文献   

19.
直馏柴油催化氧化脱硫均相催化剂的制备与评价   总被引:9,自引:1,他引:9       下载免费PDF全文
唐晓东  刘亮  税蕾蕾 《化工学报》2005,56(4):642-645
引 言柴油脱硫技术分为加氢脱硫和非加氢脱硫两大类[1]. 传统的加氢工艺能够满足柴油的低硫要求,但存在装置投资大、操作条件苛刻 (温度>300 ℃,压力>4 0 MPa, 需要氢源) 和操作费用高等技术经济问题. 非加氢脱硫技术在常温或低温、常压和无须氢源条件下操作已受到国内外广泛的重视, 得到很大的发展. 非加氢脱硫技术主要有吸附法[1,2]、萃取法[3,4]、络合法[5]、生物脱硫法[6]、H2O2 氧化法[7,8] 和催化氧化法[9], 其中 H2O2 氧化法已成为国内外的研究热点, 如美国 Petro star公司、日本 PEC、中国石油大学、洛阳石化工程公司等均在大…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号