首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three rumen-fistulated Jersey steers were gradually adapted to a wheat-barley concentrate over a 4-wk period. Adaptation steps consisted of four 1-wk periods during which steers were fed diets with forage-to-concentrate (F:C) ratios of 100:0, 79:21, 59:41, and 39:61. The forage consisted of chopped hay (CH), and the concentrate consisted of pelleted concentrate containing 50% ground wheat and 50% ground barley. Steers were fed the all-forage diet ad libitum during wk 1. Feed offered in wk 2 to 4 was kept constant at the ad libitum intake during wk 1. On 2 d that were set 3 d apart during wk 5, subacute ruminal acidosis (SARA) was induced in the steers by feeding a diet with an F:C ratio of 24:76 by offering them 0.9 kg of CH at 0900 h followed by 2 meals of 3.0 kg each of wheat-barley pellets (WBP) at 1100 h and 1300 h and 0.9 kg of CH at 1700 h, to depress rumen pH for at least 3 h/d below 5.6. The average concentrate inclusion for the SARA induction diet was 76 ± 10% DM. During stepwise adaptation, time with pH below 5.6 increased to an average of 121 min/d when the steers were consuming a diet containing 61% DM as WBP. Dietary inclusion of WBP at the rate of 76% DM induced SARA because the steers spent an average of 219 min/d with pH below 5.6. The free ruminal lipopolysaccharide (LPS) concentration increased from 6,310 endotoxin units (EU)/mL with the all-forage diet to 18,197 EU/mL with the 61% concentrate diet. The ruminal LPS concentration increased to 26,915 EU/mL when SARA was induced. Serum haptoglobin increased from 0.53 mg/mL when steers were on the all-forage diet to 1.90 mg/mL with the 61% concentrate diet and were not increased further by inducing SARA. The serum amyloid-A concentration was not affected by increasing dietary concentrate during stepwise adaptation to the concentrate, but increased from 71 to 163 μg/mL when SARA was induced. A gradual increase in dietary concentrate so that the F:C ratio decreased to 39:61 resulted in increased ruminal LPS concentrations. Subsequent induction of SARA further increased ruminal LPS and activated an inflammatory response.  相似文献   

2.
The objective of this study was to evaluate the effect of a low-moisture buffer block on ruminal pH and milk production in cows induced with subacute ruminal acidosis (SARA). Sixteen ruminally cannulated cows were randomly assigned to treatment (access to buffer blocks) or control (no buffer blocks). Ruminal pH was recorded each minute; dry matter intake (DMI), milk yield, and milk composition were measured daily. The experiment lasted 12 d and consisted of a 3-d pre-SARA period (without access to buffer blocks; d 1 to 3), after which 8 cows were given access to buffer blocks and 8 cows continued without access to buffer blocks. The next 4 d (d 4 to 7) were for evaluating the response to buffer blocks. On d 8, cows were restricted to 50% of previous DMI, and on d 9 SARA was induced (addition of 4 kg of wheat/barley pellet to pre-SARA total mixed ration (TMR). Cows were then monitored for a 3-d recovery period (d 10 to 12). The SARA challenge was successful in decreasing mean ruminal pH and time and area below pH 5.6. Intake of buffer blocks averaged 0.33 kg of DM/cow per day and was greatest on d 4 and d 8. Total DMI (TMR plus buffer block) and yields of milk and milk components were not affected by treatment. Although there was no overall effect of treatment on any of the ruminal pH variables measured, there were significant treatment by period interactions for several ruminal pH variables. Cows on the control treatment tended to experience a greater decrease in mean ruminal pH when induced with SARA than cows with access to buffer blocks (−0.55 vs. −0.20 pH units). Cows on the control treatment also experienced a greater increase in time (9.7 vs. 4.1 h/d) and area (249 vs. 83 min × pH units/d) below pH 5.6 compared with cows with access to buffer blocks. Ruminal volatile fatty acids, lactate, ethanol, and succinate concentrations during the SARA challenge did not differ between treatments. Eating behavior was not affected by treatment. Size of the first meal of the day was greater on the SARA challenge day than during the pre-SARA period (11.0 vs. 5.7 kg, as fed). Giving cows access to a buffer-containing molasses block may reduce the duration and the severity of a 1-d SARA challenge.  相似文献   

3.
The effects of a grain-based subacute ruminal acidosis (SARA) challenge (GBSC) and an alfalfa-pellet SARA challenge (APSC) on fermentation and endotoxins in the rumen and in the cecum, as well as on endotoxins in peripheral blood, were determined. Six nonlactating Holstein cows with cannulas in the rumen and cecum were used in the study. A 3×3 Latin square arrangement of treatments with 4-wk experimental periods was adopted. During the first 3 wk of each experimental period, all cows received a diet containing 70% forages [dry matter (DM) basis]. In wk 4 of each period, cows received 1 of the following 3 diets: the 70% forage diet fed during wk 1 to 3 (control), a diet in which 34% of the dietary DM was replaced with grain pellets made of 50% ground wheat and 50% ground barely (GBSC), or a diet in which 37% of dietary DM was replaced with pellets of ground alfalfa (APSC). Rumen pH was monitored continuously using indwelling pH probes, and rumen fluid, blood, cecal digesta, and fecal grab samples were collected immediately before feed delivery at 0900 h and at 6 h after feed delivery on d 3 and 5 of wk 4. The time for which rumen pH was below 5.6 was 56.4, 225.2, and 298.8 min/d for the control, APSC, and GBSC treatments, respectively. Compared with the control, SARA challenges resulted in similar reductions in cecal digesta pH, which were 7.07, 6.86, and 6.79 for the control, APSC, and GBSC treatments, respectively. Compared with the control, only GBSC increased starch content in cecal digesta, which averaged 2.8, 2.6, and 7.4% of DM for the control, APSC, and GBSC, respectively. Free lipopolysaccharide endotoxin (LPS) concentration in rumen fluid increased from 10,405 endotoxin units (EU)/mL in the control treatment to 30,715 and 168,391 EU/mL in APSC and GBSC, respectively. Additionally, GBSC increased the LPS concentration from 16,508 to 118,522 EU/g in wet cecal digesta, and from 12,832 to 93,154 EU/g in wet feces. The APSC treatment did not affect LPS concentrations in cecal digesta and feces. All concentrations of LPS in blood plasma were below the detection limit of >0.05 EU/mL of the technique used. Despite the absence of LPS in blood, only GBSC increased the concentration of LPS-binding protein in blood plasma, which averaged, 8.9, 9.5, and 12.1mg/L for the control, APSC, and GBSC treatments, respectively. This suggests that GBSC caused translocation of LPS from the digestive tract but that LPS was detoxified before entering the peripheral blood circulation. The higher LPS concentration in cecal digesta in the GBSC compared with the APSC suggests a higher risk of LPS translocation in the large intestine in GBSC than in APSC.  相似文献   

4.
The effects of monensin premix supplementation on ruminal pH characteristics and forage degradability, and total tract diet digestibility during grain-induced subacute ruminal acidosis (SARA) in lactating dairy cows receiving a total mixed ration were investigated. Six multiparous, rumen-fistulated Holstein cows were used in a 2-treatment, 2-period (5 wk per period) crossover design. During wk 5 (d 29 to 35) of each period, SARA was induced using a grain challenge model, and ruminal pH was measured continuously using indwelling pH probes. Ruminal degradation of corn silage and alfalfa haylage was determined using the in situ (nylon bag) technique, and total tract diet digestibility was determined by total fecal collection during wk 5. Monensin supplementation did not affect dry matter intake, milk yield, and composition, and ruminal pH characteristics under these experimentally induced SARA conditions. Rates of ruminal forage fiber degradability were similar between control and monensin-treated cows; however, monensin supplementation increased total tract fiber digestion. This study indicates that monensin altered total tract nutrient digestion by increasing fiber digestion at postruminal sites.  相似文献   

5.
Feeding grain-rich diets often results in subacute ruminal acidosis (SARA), a condition associated with ruminal dysbiosis and systemic inflammation. Yet, the effect of SARA on hindgut microbiota, and whether this condition is aggravated by exogenous immune stimuli, is less understood. Therefore, the aims of this study were to determine the effects of an intermittent high-grain SARA model on the hindgut microbial community, and to evaluate whether the effects of SARA on the fecal microbiome and fermentation were further affected by an intramammary lipopolysaccharide (LPS) challenge. A total of 18 early-lactating Simmental cows were divided into 3 groups (n = 6); 2 were fed a SARA-inducing feeding regimen (60% concentrate), 1 was fed a control (CON) diet (40% concentrate). On d 30, 1 SARA group (SARA-LPS) and the CON group (CON-LPS) were intramammarily challenged with a single dose of 50 µg of LPS from Escherichia coli O26:B6, whereas the remaining 6 SARA cows (SARA-PLA) received a placebo. Using a longitudinal randomized controlled design, with grouping according to parity and days in milk), statistical analysis was performed with baseline measurements used as a covariate in a mixed model procedure. The SARA-inducing feeding challenge resulted in decreased fecal pH and increased butyrate as a proportion of total short-chain fatty acids in the feces. On d 30, SARA-challenged cows had decreased fecal diversity as shown by the Shannon and Chao1 indices and a decrease in the relative abundance of Euryarchaeota and cellulolytic genera, and numerical increases in the relative abundance of several Firmicutes associated with starch and secondary fermentation. The LPS challenge did not affect the fecal pH and short-chain fatty acids, but increased the Chao1 richness index in an interaction with the SARA challenge, and affected the relative abundance of Verrucomicrobia (1.13%), Actinobacteria (0.19%), and Spirochaetes (0.002%), suggesting an effect on the microbial ecology of the hindgut during SARA conditions. In conclusion, the SARA-inducing feeding regimen promoted important microbial changes at d 30, including reduced diversity and evenness compared with CON, whereas the external LPS challenge led to changes in the microbial community without affecting fecal fermentation properties.  相似文献   

6.
Late-lactation Holstein cows (n = 144) that were offered 15 kg dry matter (DM)/cow per day of perennial ryegrass to graze were randomized into 24 groups of 6. Each group contained a fistulated cow and groups were allocated to 1 of 3 feeding strategies: (1) control (10 groups): cows were fed crushed wheat grain twice daily in the milking parlor and ryegrass silage at pasture; (2) partial mixed ration (PMR; 10 groups): PMR that was isoenergetic to the control diet and fed twice daily on a feed pad; (3) PMR+canola (4 groups): a proportion of wheat in the PMR was replaced with canola meal to produce more estimated metabolizable protein than other groups. Supplements were fed to the control and PMR cows at 8, 10, 12, 14, or 16 kg of DM/d, and to the PMR+canola cows at 14 or 16 kg of DM/d. The PMR-fed cows had a lower incidence of ruminal acidosis compared with controls, and ruminal acidosis increased linearly and quadratically with supplement fed. Yield of milk fat was highest in the PMR+canola cows fed 14 or 16 kg of total supplement DM/d, followed by the PMR-fed cows, and was lowest in controls fed at these amounts; a similar trend was observed for milk fat percentage. Milk protein yield was higher in the PMR+canola cows fed 14 or 16 kg of total supplement DM/d. Milk yield and milk protein percentage were not affected by feeding strategy. Milk, energy-corrected milk, and milk protein yields increased linearly with supplement fed, whereas milk fat percentage decreased. Ruminal butyrate and d-lactate concentrations, acetate-to-propionate ratio, (acetate + butyrate)/propionate, and pH increased in PMR-fed cows compared with controls for all supplement amounts, whereas propionate and valerate concentrations decreased. Ruminal acetate, butyrate, and ammonia concentrations, acetate-to-propionate ratio, (acetate + butyrate)/propionate, and pH linearly decreased with amounts of supplement fed. Ruminal propionate concentration linearly increased and valerate concentration linearly and quadratically increased with supplement feeding amount. The Bacteroidetes and Firmicutes were the dominant bacterial phyla identified. The Prevotellaceae, Ruminococcaceae, and Lachnospiraceae were the dominant bacterial families, regardless of feeding group, and were influenced by feeding strategy, supplement feeding amount, or both. The Veillonellaceae family decreased in relative abundance in PMR-fed cows compared with controls, and the Streptococcaeae and Lactobacillaceae families were present in only minor relative abundances, regardless of feeding group. Despite large among- and within-group variation in bacterial community composition, distinct bacterial communities occurred among feeding strategies, supplement amounts, and sample times and were associated with ruminal fermentation measures. Control cows fed 16 kg of DM of total supplement per day had the most distinct ruminal bacterial community composition. Bacterial community composition was most significantly associated with supplement feeding amount and ammonia, butyrate, valerate, and propionate concentrations. Feeding supplements in a PMR reduced the incidence of ruminal acidosis and altered ruminal bacterial communities, regardless of supplement feeding amount, but did not result in increased milk measures compared with isoenergetic control diets component-fed to late-lactation cows.  相似文献   

7.
Two experiments were conducted to study the effects of a subacute ruminal acidosis (SARA) model on diet choice in dairy cows. In the first experiment, 25% of the ad libitum dry matter intake (DMI) of the total mixed ration (TMR) was replaced with wheat-barley pellets (WBP, 50% ground wheat, 50% ground barley). Rumen pH was measured continuously via in-dwelling probes in 4 mid to late lactation cows. This diet change reduced rumen pH by 0.14 +/- 0.02 pH units (mean +/- SE) and increased time below pH 6.0, from 319 +/- 36 min(-1) to 641 +/- 36 min(-1). Hence, the nutritional model successfully induced SARA. The second experiment determined if inducing SARA increases the feed preference for long alfalfa hay compared with alfalfa pellets. The 2 wk of inducing SARA were separated by 1 control wk. Four cows on either SARA and control diets were given a choice of 2 feeds, 2 times per d, for 30 min. The preference ratios (PR = Amount of Hay consumed/Amount of Hay + Pellets consumed) for alfalfa hay during two SARA weeks was greater (0.85 +/- 0.03) compared with the control week (0.60 +/- 0.03). In SARA weeks, average rumen pH was 0.23 +/- 0.03 units lower, and time below pH 6.0 and 5.6 was higher compared to control. These results suggest that when given a choice of feeds, dairy cows alter their diet selection to attempt to attenuate SARA.  相似文献   

8.
We investigated the effects of active dried Saccharomyces cerevisiae (ADSC) on ruminal pH, fermentation, and the fluid bacterial community during the short-term ruminal acidosis challenge. Five rumen-fistulated male Holstein calves (147.0 ± 5.8 kg of body weight; 3.6 ± 0.2 mo of age) were used in a crossover design, and 0 g (control group, n = 5) or 2 g (SC group, n = 5) of ADSC (1 × 1010 cfu/g) was administered twice daily for 21 consecutive days. Calves were fed a high-forage diet during the first 15 d (d –14 to d 0; prechallenge), a high-grain diet for 2 d (d 1 and 2; ruminal acidosis challenge), and a high-forage diet for 4 d (d 3 to 6; postchallenge). Ruminal pH was measured continuously. Rumen fluid samples were collected once daily (0800 h) on d 0, 3, 4, and 6 and twice daily (0800 and 1100 h) on d 1 and 2. Bacterial DNA was extracted from fluid samples collected on d 0 and 3. The 24-h and 1-h mean ruminal pH was significantly depressed during the ruminal acidosis challenge in each group, although the changes were more severe in the SC group, consistent with a significant increase in lactic acid on d 2 (1100 h) compared with d 0 and a significantly higher proportion of butyric acid on d 2 (1100 h) compared with the control group. Feeding a high-grain diet caused a decrease in bacterial diversity due to high acidity in both groups. The relative abundances of the genus Bifidobacterium and operational taxonomic unit (OTU) 3 (Bifidobacterium species) increased significantly in both groups but were higher in the SC group. Correlation analyses indicated that OTU3 (Bifidobacterium species) were positively correlated with lactic acid concentration and that OTU1 (Prevotella species) and OTU5 (Succinivibrio species) were correlated with the proportion of butyric acid. These results suggest that ADSC supplementation induced the intense decreases in ruminal pH by increased butyric and lactic acid production through a high-grain diet fermentation by rumen fluid bacterial species during the short-term ruminal acidosis challenge in Holstein calves after weaning.  相似文献   

9.
Ruminal endotoxin and plasma oxidative stress biomarker concentrations were studied in dairy heifers challenged with grain, fructose, and histidine in a partial factorial study. Holstein-Friesian heifers [n = 30; average body weight (BW) of 359.3 ± 47.3 kg] were randomly allocated to 5 treatment groups: (1) control (no grain); (2) grain [crushed triticale at 1.2% of BW dry matter intake (DMI)]; (3) grain (0.8% of BW DMI) + fructose (0.4% of BW DMI); (4) grain (1.2% of BW DMI) + histidine (6 g/head); and (5) grain (0.8% of BW DMI) + fructose (0.4% of BW DMI) + histidine (6 g/head). Rumen samples were collected by stomach tube 5, 65, 115, 165, and 215 min after diet consumption and blood samples at 5 and 215 min after consumption. Rumen fluid was analyzed for endotoxin concentrations. Plasma was analyzed for concentrations of the following oxidative stress biomarkers: reactive oxygen metabolites (dROM), biological antioxidant potential (BAP), advanced oxidation protein products, and ceruloplasmin, and activity of glutathione peroxidase. Dietary treatment had no effect on concentrations of endotoxin or oxidative stress biomarkers. We observed no interactions of treatment by time. Ruminal concentrations of endotoxin decreased during the sampling period from 1.12 × 105 ± 0.06 to 0.92 × 105 endotoxin units/mL ± 0.05 (5 and 215 min after diet consumption, respectively). Concentrations of dROM and the oxidative stress index (dROM/BAP × 100) increased over the sampling period, from 108.7 to 123.5 Carratelli units (Carr U), and from 4.1 to 4.8, respectively. Ceruloplasmin concentrations markedly declined 5 min after the consumption of diets, from 190 to 90 mg/L over the 215-min sampling period. Overall, a single feeding challenge for dairy cattle with grain, fructose, and histidine, and combinations thereof, may not be sufficient to induce marked changes in endotoxin or oxidative stress biomarker concentrations.  相似文献   

10.
The effects of grain-induced subacute ruminal acidosis (SARA) in lactating dairy cows on free ruminal lipopolysaccharide (LPS) and indicators of inflammation were determined. Four mid lactation dairy cows were divided into 2 groups of 2 cows and used in a repeated switchover design. During each period, SARA was induced in 2 animals for 5 subsequent days by replacing 25% of their total mixed ration (dry matter basis) with a concentrate made of 50% wheat and 50% barley. The other 2 cows acted as controls and were fed a total mixed ration diet in which 44% of dry matter was concentrate. On average, inducing SARA did not affect milk composition, increased the duration of rumen pH below 5.6 from 187 to 309 min/d, and increased free ruminal LPS concentration from 24,547 endotoxin units (EU)/mL to 128,825 EU/mL. Averaged across treatments, milk fat yield and milk protein yield were 0.66 and 1.00 kg/d, respectively. Rumen pH and milk fat data suggest that control cows also experienced ruminal acidosis, albeit a milder form of this disease than SARA cows. Serum LPS concentration in both control and SARA cows was less than the detection limit of <0.01 EU/mL for the assay. Induction of SARA elevated serum amyloid A concentration from 286.8 to 498.8 μg/mL, but did not affect other markers of inflammation including haptoglobin, fibrinogen, serum copper, or white blood cells. These results suggest that grain-induced SARA in mid lactation dairy cows increases the lysis of gram-negative bacteria and activates an inflammatory response.  相似文献   

11.
The effects of a monensin premix on milk fatty acid content during grain-induced subacute ruminal acidosis (SARA) in Holstein cows receiving a total mixed ration was investigated. Six multiparous, rumen-fistulated Holstein cows were used in a two-treatment, two-period crossover design with 6-wk periods. Experimental treatments were either a monensin premix or a placebo premix. At the beginning of wk 4, SARA was induced in experimental cows for a 10-d period using a grain challenge model. The administration of a monensin premix elevated milk fat proportion of total short-chain saturated fatty acids (sum of C4 to C15). Milk fat proportions of conjugated linoleic acid isomers were unaffected. Linolenic acid (C18:3n3) proportion in milk fat of monensin-treated cows were lower when compared with placebo-treated cows during the SARA period. Results from this study indicate that dietary supplementation with monensin during SARA had little effect on milk fatty acid content.  相似文献   

12.
The effects of monensin, administered either as a controlled release capsule (CRC) or a premix, on attenuating grain-induced subacute ruminal acidosis (SARA) and on ruminal fermentation characteristics in Holstein cows receiving a total mixed ration were investigated in two experiments. In both experiments, six multiparous, rumen-fistulated Holstein cows were used in a two-treatment, two-period crossover design with 6-wk periods. In Experiment 1, treatments were either a monensin CRC or a placebo CRC. In Experiment 2, treatments were either a monensin premix or a placebo premix. In both experiments, at the beginning of wk 4 SARA was induced in experimental cows for a 10-d period with a grain challenge model, and ruminal pH was measured continuously using indwelling pH probes. The administration of monensin either as a CRC or a premix had no effect on ruminal pH characteristics. Neither monensin CRC nor premix had an effect on ruminal volatile fatty acid concentrations, but reduced the acetate:propionate ratio. Monensin premix-treated cows were observed to have increased milk yield, largely as a result of a higher dry matter intake in monensin-treated cows compared to control cows. Milk fat content and yield were lower in monensin-treated cows compared to placebo-treated cows during SARA. In conclusion, there is no evidence that monensin was efficacious in raising ruminal pH during SARA under the conditions employed in this study.  相似文献   

13.
High-concentrate diets can lead to subacute ruminal acidosis and are known to result in changes of the ruminal fermentation pattern and mammary secretion of fatty acids. The objective of this paper is to describe modifications in milk fatty acid proportions, particularly odd- and branched-chain fatty acids and rumen biohydrogenation intermediates, associated with rumen parameters during a 6-wk subacute ruminal acidosis induction protocol with 12 ruminally fistulated multiparous cows. The protocol involved a weekly gradual replacement of a standard dairy concentrate with a wheat-based concentrate (610 g of wheat/kg of concentrate) during the first 5 wk and an increase in the total amount of concentrate in wk 6. Before the end of induction wk 6, cows were switched to a control diet because 7 cows showed signs of sickness. The pH was measured continuously by an indwelling pH probe. Milk and rumen samples were taken on d 2 and 7 of each week. Data were analyzed using a linear mixed model and by principal component analysis. A pH decrease occurred after the first concentrate switch but rumen parameters returned to the original values and remained stable until wk 5. In wk 5 and 6, rumen pH values were indicative of increasing acidotic conditions. After switching to the control diet in wk 6, rumen pH values rapidly achieved normal values. Odd- and branched-chain fatty acids and C18:1 trans-10 increased with increasing amount of concentrate in the diet, whereas C18:1 trans-11 decreased. Four fatty acids [C18:1 trans-10, C15:0 and C17:0+C17:1 cis-9 (negative loadings), and iso C14:0 (positive loading)] largely correlated with the first principal component (PC1), with cows spread along the PC1 axis. The first 4 wk of the induction experiment showed variation across the second principal component (PC2) only, with high loadings of anteiso C13:0 (negative loading) and C18:2 cis-9,trans-11 and C18:1 trans-11 (positive loadings). Weeks 5 and 6 deviated from PC2 and tended toward the negative PC1 axis. A discriminant analysis using a stepwise approach indicated the main fatty acids discriminating between the control and acidotic samples as iso C13:0, iso C16:0, and C18:2 cis-9,trans-11 rather than milk fat content or C18:1 trans-10, which have been used before as indicators of acidosis. This shows that specific milk fatty acids have potential in discriminating acidotic cases.  相似文献   

14.
The effect of inducing subacute ruminal acidosis (SARA) on the free-choice intake of sodium bicarbonate (SB) was investigated in four midlactation Holstein cows in a switchover experiment with four 1-wk periods. The SARA was induced by replacing 25% of the ad libitum intake of total mixed ration (TMR) with pellets containing 50% ground wheat and 50% ground barley and restricting access to TMR from 0700 to 1700 h. Control consisted of feeding TMR ad libitum. Powdered SB was provided for ad libitum consumption. Rumen pH was measured continuously using indwelling pH probes. Induction of SARA reduced (P < 0.05) the average daily rumen pH from 6.08 to 5.87, increased (P < 0.05) the average duration of rumen pH below 6 from 547 min x d(-1) to 916 min x d(-1), and increased (P < 0.05) the average duration of rumen pH below 5.6 from 132 min x d(-1) to 397 min x d(-1) (P < 0.05) but did not significantly affect SB intake. Average intake of SB was 26.8 g x d(-1) during SARA and 34.5 g x d(-1) during control. These low SB intakes must not have substantially affected rumen pH. Sodium bicarbonate intake differed significantly (P < 0.05) between cows. These data indicate that cows did not select SB in order to attenuate SARA.  相似文献   

15.
We used four ruminally cannulated, multiparous Holstein cows (690 kg; 21 kg/d milk) in a 2-period crossover design to determine the impact of feeding a raw soybean hull-corn steep liquor pellet (SHSL) on induced subacute ruminal acidosis (SARA) in lactating cows. Cows were fed control [30% alfalfa hay, 15% corn silage, 34% corn, 9% whole cottonseed, 5% soybean meal (SBM)] or SHSL (20% of diet DM) diets as TMR. SHSL replaced 6.2% alfalfa hay, 3.7% corn silage, 6.6% corn, and 3.3% SBM. Periods were 15 d (10 d adaptation, 2 d for prechallenge measures, and 3 d of SARA challenge). Cows were fed once daily at a common DMI dictated by the cow consuming the least. Cows were fasted 12 h before the first SARA challenge. For each of the three SARA challenges, cows were offered 75% of their daily diet at 0600 h. The remaining 25% of diet DM was replaced by ground corn, which was mixed with the orts that remained 2 h after feeding and placed into the rumen. Ruminal pH declined linearly with time after feeding, and this decrease was greater during the SARA challenges. Ruminal lactate increased linearly with repeated SARA challenges. Concentrations of total ruminal VFA increased linearly after feeding, and increases were greater when cows were challenged. No differences were observed due to SHSL inclusion. The model induced SARA, but partial replacement of alfalfa, corn silage, corn, and SBM by SHSL did not influence responses to SARA challenges.  相似文献   

16.
The hindgut epithelial barrier plays an important role in maintaining absorption and immune homeostasis in ruminants. However, little information is available on changes in colon epithelial barrier structure and function following grain-induced subacute ruminal acidosis (SARA). The objective of this study was to investigate the effects of grain-induced SARA on colon epithelial morphological structure, permeability, and gene expression involved in epithelial barrier function. Twelve mid-lactating (136 ± 2 d in milk; milk yield = 1.68 ± 0.15 kg/d) Saanen dairy goats with 62.13 ± 4.76 kg of body weight were randomly divided into either the control (CON) treatment (n = 6) or SARA treatment (n = 6). The CON goats were fed a basal diet with a nonfiber carbohydrates to neutral detergent fiber ratio of 1.15 for 60 d. The SARA goats were fed 4 diets with increasing nonfiber carbohydrates to neutral detergent fiber ratio at 1.15, 1.49, 2.12, and 2.66 to induce SARA, with each diet (referred to as period) being fed for 15 d, including 12 d for adaptation and 3 d for sampling. Continuous ruminal pH recordings were used to diagnose the severity of SARA. Additionally, colonic tissues were collected to evaluate the epithelial morphological structure, permeability, and expression of tight junction proteins using transmission electron microscopy, Ussing chamber, quantitative real-time PCR, and Western blotting. Profound disruption in the colonic epithelium was mainly manifested as the electron density of tight junctions decreased, intercellular space widened, and mitochondria swelled in SARA goats. Colon epithelial short-circuit current, tissue conductance, and the mucosal-to-serosal flux of fluorescein isothiocyanate-dextran 4 kDa were increased and potential difference was decreased in SARA goats compared with CON goats. Subacute ruminal acidosis increased mRNA and protein expression levels of CLDN1 and OCLN in the colonic epithelium. Overall, the data of the present study demonstrate that SARA can impair the barrier function of the colonic epithelium at both structural and functional levels, which is associated with severe epithelial structural damage and increased permeability and changes in the expression of tight junction proteins.  相似文献   

17.
The effects of a grain-based subacute ruminal acidosis (SARA) challenge on translocation of lipopolysaccharide (LPS) into the peripheral circulation, acute phase proteins in blood and milk, feed intake, milk production and composition, and blood metabolites were determined in 8 lactating Holstein cows. Between wk 1 and 5 of 2 successive 6-wk periods, cows received a total mixed ration ad libitum with a forage to concentrate (F:C) ratio of 50:50. In wk 6 of both periods, the SARA challenge was conducted by replacing 21% of the dry matter of the total mixed ration with pellets containing 50% wheat and 50% barley. Rumen pH was monitored continuously using indwelling pH probes in 4 rumen cannulated cows. Rumen fluid samples were collected 15 min before feed delivery and at 2, 4, 6, 12, 14, 16, 18, and 24 h after feed delivery for 2 d during wk 5 (control) and wk 6 (SARA). Peripheral blood samples were collected using jugular catheters 15 min before feeding and at 6 and 12 h after feeding at the same days of the rumen fluid collections. The SARA challenge significantly reduced average daily pH from 6.17 to 5.97 and increased the duration of rumen pH below pH 5.6 from 118 to 279 min/d. The challenge reduced dry matter intake (16.5 vs. 19 kg/d), milk yield (28.3 vs. 31.6 kg/d), and milk fat (2.93 vs. 3.30%, 0.85 vs. 0.97 kg/d), and tended to increase milk protein percentage (3.42 vs. 3.29%), without affecting milk protein yield (1.00 vs. 0.98 kg/d). The challenge also increased the concentration of free LPS in rumen fluid from 28,184 to 107,152 endotoxin units (EU)/mL. This was accompanied by an increase in LPS in peripheral blood plasma (0.52 vs. <0.05 EU/mL) with a peak at 12 h after feeding (0.81 EU/mL). Concentrations of the acute phase proteins serum amyloid A, haptoglobin, and LPS-binding protein (LBP) in peripheral blood as well as LBP concentration in milk increased (438.5 vs. 167.4, 475.6 vs. 0, 53.1 vs. 18.2, and 6.94 vs. 3.02 μg/mL, respectively) during SARA. The increase in LBP in combination with the increase in LPS in peripheral blood provides additional evidence of translocation of LPS. Results suggest that the grain-based SARA challenge resulted in translocation of LPS into the peripheral circulation, and that this translocation triggered a systemic inflammatory response.  相似文献   

18.
Our study investigated the effects of, and interactions between, forage particle size, level of dietary ruminally fermentable carbohydrate (RFC), and level of dietary starch on performance, chewing activity, and ruminal pH for dairy cows fed one level of dietary NDF. Twelve cows (48 DIM) were assigned to six treatments in a replicated 6 x 6 Latin square. Treatments were arranged in an incomplete 2 x 2 x 2 factorial design. Factors were: dry cracked shelled corn (DC, low RFC) or ground high-moisture corn (HMC; high RFC), finely chopped or coarse silage, and alfalfa silage as the only forage or a 50:50 ratio (DM basis) of alfalfa and corn silage. Diets combining HMC with only alfalfa silage were not included in the experiment. Diets were fed for ad libitum intake as a TMR with a concentrate:forage ratio of 61:39. Diets based on only alfalfa silage and diets based on a mix of alfalfa and corn silage averaged 18.6 and 15.8% CP, 25.8 and 24.7% NDF, 17.7 and 14.8% ADF, and 29.1 and 37.3% starch, respectively. Mean particle sizes were 5.3, 2.7, 5.6, and 2.8 mm for coarse alfalfa, fine alfalfa, coarse corn silage, and fine corn silage, respectively. Decreasing forage particle size decreased DMI (23.3 vs. 21.6 kg) and organic matter intake (22.0 vs. 20.2 kg). Increasing RFC decreased DMI (22.8 vs. 21.0 kg) and organic matter intake (21.5 vs. 20.0 kg). Decreasing forage particle size increased energy-corrected milk for alfalfa based diets (34.9 vs. 37.4 kg). Percentage of milk fat decreased with decreasing forage particle size (3.07 vs. 2.90%) and increased level of RFC (3.04 vs. 2.57%). Percentage of protein increased when corn silage partially replaced alfalfa silage (2.84 vs. 2.90%) but decreased when HMC replaced DC (2.90 vs. 2.84%). Apparent total tract digestibility of DM (66.7 vs. 68.5%), OM (65.9 vs. 70.7%), and starch (88.9 vs. 93.4%) increased when level of RFC was increased. Increasing level of RFC decreased mean ruminal pH from 5.82 to 5.67 and decreased minimum pH. Hours per day at which pH was <5.8, and area <5.8, increased when corn silage partially replaced alfalfa silage (2.6 vs. 4.4 h and 8.9 h x pH vs. 11.4 h x pH) and decreased further when level of RFC was increased (4.4 vs. 6.4 h and 11.4 h x pH vs. 14.3 h x pH). Decreasing forage particle size in HMC diets increased hours and area <5.8, but for DC diets, the effect of forage particle size depended on forage source. Interactions were found between level of physically effective fiber, forage source, and level of RFC on production and pH, complicating the inclusion of these effects in dairy ration formulation and evaluation.  相似文献   

19.
The influence of corn or barley, or the equal mixture of both, on digestion characteristics and dairy cow performance was evaluated in metabolic and production experiments. Three rumen-cannulated early-lactation cows were used in a 3 x 3 Latin square design experiment to study the effect on ruminal fermentation characteristics and whole-tract digestion of substituting barley grain with corn. Production responses were determined by the use of 27 early-lactation Holstein cows. Cows in the production study were fed the test diets for 12 wk after a 2-wk covariate period. Results from the metabolic study indicated the effects of grain source on ruminal and total-tract digestion to be minimal. Total ruminal volatile fatty acids and acetate concentrations decreased linearly, butyrate increased linearly, and pH and lactic acid concentration were not affected by increasing levels of corn. Apparent digestibility of DM and organic matter showed a quadratic response with increasing the corn level in the diet, with no dietary effect on neutral detergent fiber, acid detergent fiber, and cellulose digestion. Ruminal fermentation characteristics suggest that substitution of barley grain with corn may alter the site of digestion and the end products of digestion that are absorbed by the animal. Multiparous cows failed to respond to treatment, whereas primiparous animals showed the greater response in milk yield and milk-component yield to diets that contained an equal mixture of corn and barley. These results probably reflect a more optimal synchronization of dietary protein and energy for dairy cows fed the 50:50 barley/corn diet.  相似文献   

20.
Four multiparous ruminally fistulated Holstein dairy cows were used in an 8-wk experiment utilizing a repeated measures block design to determine the effects of subacute ruminal acidosis (SARA) on supplemented water intake. Animals were subjected to SARA, which was induced by replacing 25% of the ad libitum intake of the total mixed ration (dry matter basis) with 50:50 wheat:barley pellets utilizing a grain challenge model. Cows had free choice from 2 water bowls. One bowl contained water with sodium bicarbonate (SB) supplemented at 2.5 g/L. The other bowl contained unsupplemented water. Ruminal pH was monitored continuously during the trial using indwelling pH probes. The induction of SARA reduced daily mean ruminal pH and increased the duration when ruminal pH was below 6. The total mixed ration intake by the cows decreased during the SARA periods. The overall preference for SB-supplemented water did not change, as the preference ratio was similar during the control and SARA periods. During the period of greatest ruminal pH depression, total water intake was higher during the SARA periods than during the control periods. During SARA, there was no difference in the preference of a SB water source to unsupplemented water. During the period of day with the most severe ruminal pH depression, the lactating dairy cows subjected to SARA increased their total water intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号