首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以高温蓄热式加热炉为例,运用Fluent软件,研究了烧嘴喷口间距对炉内温度场、流速场分布的影响。研究结果表明:当烧嘴喷口间距增大时,虽然天然气和空气更容易扩散到整个炉膛燃烧,但是若距离增大到超过一定的程度,射流的偏转角度也会增大,造成炉内流速分布不均匀,降低炉膛内的平均温度,同时还会推迟天然气和空气混合,造成燃料燃烧不完全。当烧嘴喷口间距为450 mm时,炉内平均温度最高,而且温度分布最均匀。  相似文献   

2.
刘坤  李先春  韩仁智 《鞍钢技术》2004,(5):26-28,45
利用大型软件CFX4.4,建立了高温蓄热式加热炉内温度场和浓度场等的数学模型.通过确定合理的烧嘴布置方式及烧嘴倾斜角度,确保了加热炉内高温空气燃烧的加热效果.  相似文献   

3.
朱彤  李晓萍  吴家正 《工业炉》2004,26(6):1-4,50
分析了炉膛结构以及烧嘴布置方式对流场、火焰温度、组分分布和NOx生成量的影响.研究结果表明当炉膛顶部同时布置烧嘴和排烟口时,燃烧主射流对炉膛排烟的卷吸将降低助燃空气射流中的氧气浓度和燃气射流中的可燃物浓度,进而降低氮氧化物的排放;此外,NOx排放量同烟气在炉内停留时间有关,其浓度将沿烟气流程逐渐增加.  相似文献   

4.
高温和低氧是高温空气燃烧技术的两个基本特点,蓄热烧嘴的结构对炉内氧浓度的分布具有决定性影响.应用Fluent软件计算了蓄热烧嘴在冷态工况下结构和炉内氧浓度分布的关系,并通过实验进行了验证.  相似文献   

5.
采用计算流体力学软件对1025t/h四角切圆煤粉炉内的湍流扩散燃烧进行了数值模拟,分析了燃烧器在0°~30°范围内水平摆动时的速度场、温度场和浓度场分布。结果表明:当燃烧器水平摆角为10°时,炉膛内部有较好的流场动力学特性,烟温分布较为均匀,炉内NO生成量显著下降。  相似文献   

6.
利用大型软件CFX建立了蓄热式加热炉炉内速度场的数学模型.采用k-ε模型数值模拟炉内的湍流流动,分析喷口几何形状及尺寸,喷口的分布位置等对炉内的速度分布的影响.计算结果为,蓄热式加热炉炉内流场与传统加热炉迥然不同,流场分布有利于燃料和助燃空气的混合,符合高温低氧燃烧的的流场分布.另外,影响炉内速度场的因素有炉型结构、喷口几何形状与尺寸及喷口的分布位置等.  相似文献   

7.
空气单蓄热式烧嘴燃烧过程的数值模拟及其参数优化   总被引:1,自引:0,他引:1  
文章建立了空气单蓄热式烧嘴的物理数学模型,采用FLUENT软件对蓄热式烧嘴的燃烧过程进行了三维数值模拟.研究表明,煤气和空气约在炉宽方向6~7m处燃烧完全,炉宽方向3~7m的区域为高温段,温度最高峰值约在5m处;炉内平均温度随煤气负荷和二次空气预热温度的增加而增加,随一次风比例的增加而降低;煤气负荷和二次空气预热温度对炉内温度场分布的影响最为显著,空气系数次之,而一次空气量的影响较小.  相似文献   

8.
蓄热烧嘴结构优化数值模拟研究   总被引:7,自引:2,他引:5  
高温和低氧是高温空气燃烧技术的两个基本特点 ,蓄热烧嘴的结构对炉内氧浓度的分布具有决定性影响。应用Fluent软件计算了蓄热烧嘴在冷态工况下结构和炉氧浓度分布的关系 ,并通过实验进行了验证。  相似文献   

9.
以某钢厂台车式脉冲燃烧加热炉为研究对象,采用k-ε湍流双方程模型,对炉膛内温度场进行数值模拟和研究,得出了合理有效组织燃烧的烧嘴布置和偏移角度,为保证炉膛温度的均匀性、提高加热质量和优化炉型结构提供了参考依据.系统仿真和实际运行效果表明:炉膛内温度场的均匀性得到了很大提高,满足了钢坯高质量加热的需要.  相似文献   

10.
炉膛内三维温度场的Monte—Carlo解法   总被引:1,自引:0,他引:1  
李保卫  贺友多 《钢铁》1994,29(11):68-72,63
把三维流动场的计算程序(1)与炉内辐射换热的Monte-Carlo方法(2)相结合,给出了一般情况下炉膛呐三维温度场的计算程序。在给出燃烧析热模型后,该程序用于计算一般燃烧室内的三维温度场。作为例子,作者计算了空炉状态下上部单烧嘴均热炉内温度场的分布。  相似文献   

11.
张福明  胡祖瑞  程树森  李欣 《钢铁》2012,47(5):75-81
 为开发5500m3高炉BSK顶燃式热风炉技术,对顶燃式热风炉的燃烧机制和燃烧特性进行了研究。采用CFD数学仿真模拟研究了BSK顶燃式热风炉环形陶瓷燃烧器的燃烧机制,解析了顶燃式热风炉燃烧室内气体的混合、流动以及燃烧过程,计算分析了顶燃式热风炉燃烧过程的速度场、温度场以及浓度场分布。通过对实体热风炉的冷态测试,验证了CFD数学仿真计算的结果。研究结果表明,BSK顶燃式热风炉采用旋流扩散燃烧技术使燃烧过程速度场、温度场和浓度场分布均匀对称,并可以有效控制火焰长度和火焰形状,使煤气在拱顶空间内充分燃烧。速度场、温度场和浓度场的分布与煤气和助燃空气的初始分布有直接关系。通过燃烧器喷嘴结构优化设计可以显著提高空气与煤气混合的均匀性,改善燃烧室内浓度、温度分布以及火焰形状。  相似文献   

12.
根据钢厂40 t六流重轨钢中间包的结构和工艺参数,通过Ansys Fluent软件数值模拟的方式,研究了其流场、温度场及RTD(停留时间分布)曲线。研究发现,原中间包流场及温度场分布不合理,各流一致性较差。通过正交试验,确定了挡墙开孔底部仰角10°、中部仰角10°、开孔上移0 mm的优化方案。模拟结果表明,通过优化设计,提高了中间包的整体流场速度, 大幅降低了钢水的平均停留时间标准差,最低温度提高了 14.2 K,各流水口温差缩小了 1.77K,各流一致性显著增强。40 t中间包U75V重轨钢的生产应用结果表明,优化后最远端水口(3号水口)平均停留时间由原687.1 s降至575.5 s,各流温差由2.05 K降至0.28 K,改善显著。  相似文献   

13.
几何结构影响高温空气燃烧特性的数值分析   总被引:1,自引:0,他引:1  
通过改变燃料喷口周围空气喷口分布夹角,采用数值计算的方法研究了高温空气燃烧特性的变化,包括燃烧温度场、速度场和NOx的生成和出口排放情况。模拟结果说明,减小空气分布夹角可以降低燃烧区最高温度和平均温度,扩大燃烧室内低氧范围,有效抑制热力型NOx的生成和排放。所采用的计算模型和计算方法可以较好地模拟高温空气燃烧过程,计算结果可信。  相似文献   

14.
采用数值模拟的方法研究了不同旋转流水口工艺条件对结晶器内温度场的影响.结果表明:结晶器旋流水口会稍微增加水口两侧高温区的不对称性,但能提高弯月面处钢水的温度,使弯月面处钢水温度更均匀——传统水口从水口到弯月面处温降约为15℃左右,而旋流水口仅为10℃.增加拉速或降低旋流片高度,会增加钢水弯月面处的温度;旋流片角度为120°或旋流片距水口底部390mm时,钢水弯月面处温度最高.  相似文献   

15.
利用有限元分析软件Fluent,研究了挤压速度、喷嘴纵向间距、喷嘴横向间距及水温对扁条铝挤压型材冷却的温度场影响。结果表明:挤压速度和喷嘴纵向间距对扁条铝挤压型材长度方向的温度场影响明显,喷嘴横向间距对温度场的影响主要表现在宽度方向上,水温对温度场的影响不大。  相似文献   

16.
采用Fluent软件模拟了50 t转炉四孔变角和非变角氧枪气体射流,研究了喷孔倾角对氧气射流流场和流股融合距离的影响。结果表明,在距喷头出口距离较近时,各流股独立为自由射流,随着距喷头出口距离的增加,各流股不断扩张,并在一定距离时融合成单股射流;非变角喷头A的流股融合距离为1.3 m,与冷态水模实验得出枪位1.3 m时炉口溅出量最大是一致的;变角氧枪B至I的对角喷孔倾角不同,射流流股融合了两次,大大降低了炉口溅出量;变角氧枪对角喷孔倾角相差0.5°较对角喷孔倾角相差1°时更有利于射流融合距离的增加;在研究喷孔倾角10.5°~11.5°/12.5°的9个喷头中,倾角11°/11.5°的喷头H射流融合距离最长,其理论炉口喷溅量最少。  相似文献   

17.
新型顶燃式热风炉燃烧技术研究   总被引:5,自引:0,他引:5  
陈冠军  胡雄光  钱凯  马金芳 《钢铁》2009,44(1):79-0
 在首秦公司引进、消化俄罗斯卡卢金顶燃式热风炉技术基础上,分析其技术优点和存在的不足,自行设计热风炉炉型、燃烧器结构多种方案,采用仿真、试验等手段研究了煤气、空气旋角、位置和布置方式变化的基本规律,并优选了一种可行方案,在迁钢2号高炉预热炉上进行应用试验。仿真和冷态试验结果表明,新开发的热风炉具有结构紧凑,工艺设计简单,炉顶、炉墙温度较低,燃烧完全等优点。投产应用表明,该热风炉运行良好,风温达到预期目标,满足了高炉炼铁生产需要。该技术的开发和应用,可以为国内大型高风温热风炉设计提供参考。  相似文献   

18.
利用Fluent计算软件建立三维数学模型对马钢板坯连铸结晶器内钢液的流场和温度场进行数值模拟研究,并进行正交试验,分析了水口浸入深度(150~190 mm) 、水口侧孔倾角(-10°~-16°) 、水口侧孔与中孔的截面积比值(2,2~3.2)对拉速0.9 m/s,230 mm×1800 mm结晶器内钢液流动的影响。研究结果表明,水口浸入深度和倾角对结晶器液面波动F数和凝固坯壳厚度的影响较为显著。对于浇铸断面230 mm×1800 mm的结晶器浸入式水口的最佳工艺参数为:浸入深度170 mm、水口侧孔倾角13°、侧孔出口与中孔面积比2.7。  相似文献   

19.
分析了一种环缝气流冲击雾化制粉喷嘴的结构和工作原理, 并对该雾化喷嘴模型进行了流场分布数值仿真, 研究了不同进气压力和窄缝倾角对流场速度分布的影响。研究结果表明, 从进气管入口到气流冲击雾化喷嘴出口, 加速气流速度保持最大值不变, 在距进气管入口中心线上80 mm位置之后逐渐减小; 随着进气压力的增加, 气流冲击雾化喷嘴出口速度表现出明显的增加趋势, 且仿真结果与理论计算结果误差在10%范围以内。随着窄缝倾角的增加, 负压涡流逐步向进粉管靠近, 回流区、分离区和混合区的最大速度值表现出单调增加的变化规律; 综合考虑气流冲击效果和喷射速度, 确定最优的窄缝倾角50°~60°。  相似文献   

20.
 In Shougang Jingtang 5500 m3 huge blast furnace (BF) design, dome combustion hot blast stove (DCHBS) technology is developed. DCHBS process is optimized and integrated, and reasonable hot blast stove (HBS) technical parameters are determined. Mathematic model is established and adopted by computational fluid dynamics (CFD). The transmission theory is studied for hot blast stove combustion and gas flow, and distribution results of HBS velocity field, CO density field and temperature field are achieved. Physical test model and hot trail unit are established, and the numeral calculation result is verified through test and investigation. 3-D simulation design is adopted. HBS process flow and process layout are optimized and designed. Combustion air two-stage high temperature preheating technology is designed and developed. Two sets of small size DCHBSs are adopted to preheat the combustion air to 520-600 ℃. With the precondition of BF gas combustion, the hot blast stove dome temperature can exceed 1420 ℃. According to DCHBS technical features, reasonable refractory structure is designed. Effective technical measures are adopted to prevent hot blast stove shell intercrystalline stress corrosion. Hot blast stove hot pipe and lining system are optimized and designed. After blowing in, the blast temperature keeps increasing, and the monthly average blast temperature reaches 1300 ℃ when burning single BF gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号