首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The object of the present study was to determine the influence of the rennet type on the free fatty acid (FFA) content of Idiazábal cheese. Varying this parameter during cheese-making resulted in significant differences in FFA content in the cheeses during ripening. The main FFAs in both cheese batches were caproic acid (C6 : 0) and capric acid (C10 : 0). The differences between the extreme values for the lipolysis rate were around 45%, which emphasizes the importance of the cheese-making procedure employed on lipolysis in this type of cheese. The use of locally made rennet in the preparation of Idiazábal cheese increased the level of lipolysis in the cheese. Received: 4 December 1998 / Revised version: 18 March 1999  相似文献   

2.
This study examined the use of hygienised kid rennet pastes in model cheese systems and also in goat milk semi-hard cheeses to promote lipolysis. The results obtained indicated that the use of rennet paste caused greater lipolysis and increased, mostly, the short-chain free fatty acid (FFA) content. The model systems made with whole goat’s milk using rennet paste and commercial rennet mixture exhibited a higher FFA content than did the rennet paste-free controls (31,600 vs. 25,600 μmol/kg cheese). For the pilot cheeses made with bovine rennet and rennet paste mixture, the increase in FFA level after 45 days of ripening compared with the cheeses prepared only with commercial rennet was as much as 6600 (μmol/kg cheese) and the increase in the butyric acid content was also 1650 (μmol/kg cheese). Moreover, after 15 days of ripening, industrially prepared cheeses made with rennet paste exhibited greater levels of FFA than did the cheeses made with commercial rennet (11,500 μmol/kg at 45 days of ripening). Their flavour was stronger and the organoleptic characteristics were better accepted, which implies less ripening time for commercial cheese manufacture.  相似文献   

3.
Free fatty acids (FFA) and lipid and protein oxidation changes were studied throughout maturation process of a raw goat milk cheese with protected designation of origin. Cheeses were analyzed at 4 different times of maturation, at 1, 30, 60, and 90 d. All FFA significantly increased during maturation and the relative increase was higher for long-chain than medium- or short-chain FFA. At the end of maturation, oleic (C18:1 n9), butyric (C4:0), and palmitic (C16:0) acids were the most abundant. The higher levels of short-chain fatty acids (SCFA) regarding total FFA obtained at the end of Ibores cheese ripening compared with other raw goat milk cheeses, highlight the notable role of SCFA on the flavor of this cheese owing to their low-odor thresholds. Lipid oxidation values significantly increased during maturation process but low levels of malondialdehyde were reported; however, protein oxidation did not significantly change during ripening.  相似文献   

4.
The objectives of this study were to determine the effect of partial substitution of caprine for ovine milk, dry salting and curd scalding on the free fatty acid (FFA) level of Urfa cheeses. At the end of storage, lauric and linoleic acids were lower in cheese made from milk where up to the 30% partial substitution of caprine milk for ovine milk was made. Dry salted cheeses had higher butyric, lauric, linoleic and linolenic acid levels, and lower palmitic acid levels than their scalded counterpart. A relative increase in short‐chain FFAs occurred during ripening. Palmitic and oleic acids were the most abundant FFAs in fresh and ripened Urfa cheeses.  相似文献   

5.
Triacylglycerol (TAG) composition by carbon number in 2 protected designation of origin cheeses, Mahón (cheese from cow milk) and Manchego (cheese from ewe milk) that were manufactured by 3 different producers was analyzed during cheese ripening using gas chromatography with a short capillary column. The TAG composition at different times during cheese ripening was also analyzed in cheeses from different batches produced at the same plant. Lipolysis levels in the Mahón and Manchego cheeses during ripening were low; free fatty acid values ranged from 2,500 to 4,000 ppm at the end of ripening. The TAG composition did not change significantly during ripening. The TAG values obtained from each cheese sample were substituted into the multiple regression equations that have been proposed to detect foreign fats in milk fat. The values obtained using the equations for bovine (proposed by the European Union) and ovine milk (proposed by our laboratory) were within the normal range. Accordingly, these equations can be considered useful for detecting foreign fat in these cheeses during the ripening period contemplated during this study.  相似文献   

6.
 Picante da Beira Baixa (or Picante) cheese is a hard, piquant, salted traditional cheese manufactured in Portugal from raw sheep's and goat's milks. The purpose of this work was to quantitatively assess the influence of various ripening procedures on the final characteristics of Picante cheese. Two alternative ripening protocols were considered, the traditional one and another with controlled environmental conditions via use of maturation chambers set at different preselected temperatures. The experimental cheeses were characterised in terms of microbiological, physicochemical, biochemical, sensorial and textural properties. Ripening time and temperature were statistically significant parameters for all microflora. The two ripening methods led to statistically significant differences in all physicochemical and biochemical parameters, especially the moisture content and the soluble nitrogen fractions (i.e. water loss was slower and proteolysis was faster in cheeses ripened via the traditional method). Differences in microbiological, physicochemical and biochemical properties were probables implicated in differences in textural and sensorial properties, especially cheese hardness and flavour. It was concluded that the standard ripening method was closest to the traditional one in terms of final cheese characteristics when the ripening temperature was above 11.5  °C. Received: 3 February 1998  相似文献   

7.
 Picante da Beira Baixa (or Picante) cheese is a hard, piquant, salted traditional cheese manufactured in Portugal from raw sheep's and goat's milks. The purpose of this work was to quantitatively assess the influence of various ripening procedures on the final characteristics of Picante cheese. Two alternative ripening protocols were considered, the traditional one and another with controlled environmental conditions via use of maturation chambers set at different preselected temperatures. The experimental cheeses were characterised in terms of microbiological, physicochemical, biochemical, sensorial and textural properties. Ripening time and temperature were statistically significant parameters for all microflora. The two ripening methods led to statistically significant differences in all physicochemical and biochemical parameters, especially the moisture content and the soluble nitrogen fractions (i.e. water loss was slower and proteolysis was faster in cheeses ripened via the traditional method). Differences in microbiological, physicochemical and biochemical properties were probables implicated in differences in textural and sensorial properties, especially cheese hardness and flavour. It was concluded that the standard ripening method was closest to the traditional one in terms of final cheese characteristics when the ripening temperature was above 11.5  °C. Received: 3 February 1998  相似文献   

8.
Reduced fat Muenster-type cheeses were manufactured from a mixture of bovine skim milk and ovine whole milk and from bovine milk only (control). Cheeses were evaluated at 15, 30, 60, 90, 120, and 180 d of age for numbers and type of microflora, casein hydrolysis, and amounts of free fatty acids. alpha(s1)-Casein degradation was similar for both cheeses during the aging period, but beta-casein degradation proceeded at a faster rate in the control cheese. The total amounts of free fatty acids remained constant throughout the ripening time; however, the cheeses produced with bovine/ovine milk yielded a significantly larger amount of caprylic (C8:0) and capric (C10:0) acids compared with the bovine milk cheeses. Lactobacilli increased during the aging period, while the populations of lactic acid bacteria, yeast and molds, and lipolytic organisms did not increase. Both cheeses had comparable cheese flavor intensity, but the bovine/ovine milk cheese had a greater occurrence of off flavors. The bovine/ovine milk cheeses were firmer than the bovine cheeses throughout the aging period.  相似文献   

9.
Kashar cheeses were manufactured from pure ovine (OV), bovine (BV) and caprine (CP) milk, and the chemical composition, cheese yield, proteolysis, hardness, meltability and volatile composition were studied during 90 days. Gross chemical composition, cheese yield and level of proteolysis were higher in OV cheeses than those of BV or CP cheeses. Glu, Val, Leu, Phe and Lys were the most abundant free amino acids (FAA) in the samples, and the concentrations of individual FAA were at the highest levels in OV cheeses with following BV and CP cheeses. Urea‐PAGE patterns and RP‐HPLC peptide profiles of the BV cheeses were completely different from the small ruminants’ milk cheeses (OV or CP). Higher and lower hardness and meltability values were observed in CP cheeses, respectively. OV cheeses resulted in higher levels of the major volatile compounds. In conclusion, the Kashar cheese made using OV milk can be recommended due to high meltability, proteolysis and volatiles.  相似文献   

10.
The effect of milk origin on the physicochemical characteristics, microstructure and texture of Lighvan cheese was investigated over a 90‐day ripening period. Besides fat, other physicochemical properties of Lighvan cheese were affected by milk type. The moisture content of Lighvan cheese decreased when half or all the ovine milk was substituted with bovine milk. The Lighvan cheese's microstructural properties and porosity were affected by type of milk and ripening time. Compaction of cheeses manufactured from ovine and mixed ovine and bovine milk is similar, and more than that of bovine Lighvan cheese. Ovine Lighvan cheese is harder and less brittle than bovine and mixed bovine and ovine.  相似文献   

11.
To prevent fraud and enhance quality assurance, credible analysis of dairy products is crucial. A common problem is the addition of cheaper bovine milk to caprine and/or ovine dairy products and when not declared addition of bovine milk constitutes fraud. The aim was to develop a rapid, robust and sensitive method for the identification of adulteration of caprine and/or ovine cheeses with bovine milk. New quantitative real‐time polymerase (qPCR) assays were designed for the specific determination of bovine DNA (Cow1) and bovine, caprine and ovine DNA (BoCaOv). These were applied to 17 samples of caprine cheese and 24 of ovine cheese. Results showed that 17% (7/41) of these cheeses contained >5% bovine milk. As bovine milk was not declared as an ingredient in any of the samples, this represents adulteration. Other cheeses that contained detectable bovine milk at ≤5% (22%; 5/41) might pose a health risk to people allergic to bovine milk.  相似文献   

12.
 The effects of ripening temperature, relative humidity and time on chemical and textural characteristics of a 'probiotic' goat's milk cheese were examined. The experimental layout followed a 23 factorial design, with all possible combinations of 5  °C and 10  °C (ripening temperature), 85% and 95% (ripening relative humidity) and 1 day and 70 days (ripening time). All proteolytic indices measured (water-soluble nitrogen, trichloroacetic acid-soluble nitrogen and phosphotungstic acid-soluble nitrogen) were enhanced with increased ripening temperature to a greater extent than with increased ripening relative humidity; the increase in phosphotungstic acid-soluble nitrogen was the most significant. Free fatty acid concentrations in cheeses were not influenced by ripening relative humidity but increased with ripening temperature and time. A higher ripening temperature and a lower relative humidity gave rise to firmer cheeses. Postulated empirical models have provided a good fit to the experimental data set generated; such models were able to predict a decrease of 25 days in ripening time with no impairment of either proteolytic or lipolytic indices if a cheese were to be ripened at 10  °C (rather than 5  °C) and 95% relative humidity. Received: 23 March 1998  相似文献   

13.
In this study, the basic composition and ripening profile of traditional urfa cheese made from ovine and bovine milks were investigated. While cheese made from ovine milk had higher total solids, fat-in-dry matter and total nitrogen, the titratable acidity, salt-in-dry matter, pH, total mesophilic colony count and total yeasts and moulds counts were found to be close to each other. During storage, whilst the total solids content of cheese produced from ovine milk gradually decreased, the variation in the total solids content of cheese made from bovine milk was found to be insignificant. The salt penetration into the cheeses was rapid during the first two weeks of ripening, and it continued to diffuse into the samples throughout storage. Proteolysis developed faster in the cheese made from ovine milk than in cheese of bovine milk. The former sample had higher water soluble nitrogen, nonprotein nitrogen, phosphotungustic acid soluble nitrogen, Proteose-peptone nitrogen and tyrosine levels throughout storage, and the ripening index was higher as well.  相似文献   

14.
As ovine milk production increases in the United States, somatic cell count (SCC) is increasingly used in routine ovine milk testing procedures as an indicator of flock health. Ovine milk was collected from 72 East Friesian-crossbred ewes that were machine milked twice daily. The milk was segregated and categorized into three different SCC groups: < 100,000 (group I); 100,000 to 1,000,000 (group II); and > 1,000,000 cells/ ml (group III). Milk was stored frozen at -19 degrees C for 4 mo. Milk was then thawed at 7 degrees C over a 3-d period before pasteurization and cheese making. Casein (CN) content and CN-to-true protein ratio decreased with increasing SCC group 3.99, 3.97, to 3.72% CN, and 81.43, 79.72, and 79.32% CN to true protein ratio, respectively. Milk fat varied from 5.49, 5.67, and 4.86% in groups I, II, and III, respectively. Hard ewe's milk cheese was made from each of the three different SCC groups using a Manchego cheese manufacturing protocol. As the level of SCC increased, the time required for visual flocculation increased, and it took longer to reach the desired firmness for cutting the coagulum. The fat and moisture contents were lower in the highest SCC cheeses. After 3 mo, total free fatty acids (FFA) contents were significantly higher in the highest SCC cheeses. Butyric and caprylic acids levels were significantly higher in group III cheeses at all stages of ripening. Cheese graders noted rancid or lipase flavor in the highest SCC level cheeses at each of the sampling points, and they also deducted points for more body and textural defects in these cheeses at 6 and 9 mo.  相似文献   

15.
ABSTRACT:  The effects of 24 wk of aging on the proteolytic and rheological properties of cheddar-like cheese made from caprine milk collected at different lactation periods were evaluated. Cheddar cheese was made weekly using whole milk from Alpine goats and cheeses manufactured at weeks 4, 5, 12, 14, 15, 21, 22, and 23 of lactation were evaluated for proteolytic and rheological properties at 5 d after manufacture and after 8, 16, and 24 wk of aging at 4 °C. Rheology results indicated that a minimum of 8 wk of aging was needed to stabilize the texture of the cheese and that the most uniform cheeses were made from mid lactation milk. Cheeses manufactured at weeks 12 to 15 of lactation were the firmest, had the least flexible protein matrix (highest values for hardness, chewiness, and shear stress and rigidity at point of fracture), and the lowest degree of proteolysis. Understanding the factors that impact the texture of cheese, such as aging and the period of lactation that cheesemilk is obtained, will help develop guidance for maintaining the production of high quality and uniform caprine milk cheeses.  相似文献   

16.
Although the effects of cow diet on cheese sensory properties have been well documented, the putative interactions between the biochemical and microbial milk components and their respective roles in the development of the sensory properties of cheeses have yet to be explored in depth. The aim of this study was to evaluate the specific contribution of milk fat composition to the formation of cheese sensory properties. Two creams with different fat compositions were obtained from cows fed either pasture or maize silage. Cheeses were manufactured from the same skim milk (identical chemical and microbial composition) with either the pasture- or maize silage-origin pasteurized cream added. The gross composition and microbial composition of milks did not vary with cream origin. In milks and cheeses, the fatty acid (FA) profiles were modified by the origin of the cream. The concentrations of C18:0 and unsaturated FA such as cis-9 C18:1, trans-11 C18:1, C18:3n-3, total conjugated linoleic acids, and mono- and polyunsaturated FA were higher in milks and cheeses with the pasture-origin cream than in those with the maize-origin cream. In contrast, the maize milks and cheeses had higher concentrations of short- and medium-chain saturated FA, C16:0, and C18:2n-6. The level of lipolysis was 11% in the cheese rind and only 0.30% in the cheese core. The rind of pasture cheeses had a higher concentration of free C18:0 and C18:3n-3 and a lower concentration of free C14:0 and free C16:0 than the rind of maize cheeses. The levels of major microbial groups were similar in pasture and maize cheeses at different stages of ripening. The pasture cheeses had a more elastic and creamier texture, a yellower color, and a thinner rind than the maize cheeses, but the odor and aroma of cheeses were not affected by the origin of the cream, despite a few modifications in the balance of volatile compounds from FA catabolism. Based on these results, we conclude that milk fat composition modulated by cow diet had a direct role in the texture of the cheese but no effect on flavor. The high degree of lipolysis in cheese rind, along with the higher concentration of long-chain unsaturated free FA in pasture cheeses may be responsible for antimicrobial activity, which could explain differences in the appearance of cheese rind.  相似文献   

17.
The objective of this study was to determine the pH change kinetics during Kashar cheese production from bovine, ovine and caprine milk. Kinetics of pH change were determined during milk ripening, cooking/holding and pressing/fermentation phases of Kashar cheese. The pH decreased logarithmically, nonlinearly, with time in the milk ripening period and was reduced linearly with time in the cooking/holding and pressing/fermentation stages. The time of pH decrease in cow's, ewe's and goat's milk was significantly different, except cooking/holding time, for three stages. There was no difference between bovine and caprine milk in cooking/holding time; however, ovine milk was significantly different from the other two kinds of milk. The shortest and the longest overall times were determined for caprine and ovine milk cheeses, respectively. The rate of change in milk pH of the three species was significantly different for three stages. The rate followed the pattern caprine  >  bovine  >  ovine milk.

PRACTICAL APPLICATIONS


Optimum acid development is essential to creating the desired cheese mass. For each major cheese type, lactic acid must develop in the appropriate time, usually not too rapidly or too slowly, and in a specific concentration. The progress of acidification is monitored by pH change in the industrial Kashar cheese production. The final pH of cheese is determined not only by the amount of lactic acid but also by the buffering capacity (BC) of the milk and curd. However, the BC is different between milk species. This study evaluates and compares the pH change kinetics during various stages of Kashar cheese making using cow's, ewe's and goat's milk. This work may help to compare milk and cheese curds made from bovine, ovine and caprine milk.  相似文献   

18.
Changes in the main physicochemical and biochemical characteristics of bovine, ovine and caprine milk cheeses manufactured with aqueous extracts of flowers of Cynara cardunculus were studied throughout ripening (0?–?68 days). At the end of ripening the pH in the centre was (mean ± ISD) 5.05±0.07, 5.15±0.21 and 4.91±0.07 for bovine, ovine and caprine milk cheeses, respectively; whereas the pH at the top of the cheese was 5.21±0.09, 5.44±0.12 and 5.12±0.07, respectively; the moisture content values of bovine, ovine and caprine milk cheeses were 37.68±2.32, 40.23±4.34 and 45.73±1.44%, respectively; the NaCl content values were 4.00±0.43, 4.00±0.56 and 4.08±0.58 (%TS); the fat content values were 41.01±5.32, 63.60±7.80 and 45.14±9.14 (%TS); the protein content values were 28.96±1.84, 22.89±2.37 and 30.02±1.22 (%TS); the water-soluble nitrogen values were 32.91±1.76, 46.44±1.86 and 48.72±1.08 (%TN); the values of nitrogen soluble in trichloroacetic acid were 10.25±1.93, 10.41±2.91 and 7.25±0.84 (%TN); the values of nitrogen soluble in phosphotungstic acid were 1.50±0.18, 1.87±0.65 and 1.38±0.32 (%TN); finally, the free amino acid content values were 21.33±5.34, 17.51±5.08 and 23.93±4.80 μM equivalents of leucine. Urea-polyacrylamide gel electrophoresis of water-insoluble fractions from cheeses indicated high degrees of proteolysis of αs1-casein in bovine cheeses and more extensive proteolysis of the αs-casein region in caprine than in ovine cheeses, but a moderate degree of proteolysis of β-casein in all types of cheese; electrophoregrams of the water-soluble fraction displayed increasing numbers of bands throughout ripening, an observation that is consistent with the increase in the ratio of water-soluble nitrogen to total nitrogen.  相似文献   

19.
《Food chemistry》2005,93(1):73-80
Lipolysis was studied during ripening of traditional Feta cheese produced in two small dairies, A and B. The cheeses were made from a thermized mixture of ewes’/goats’ milk by using yoghurt as starter and artisanal rennet from lambs’ and kids’ abomasa (cheese A) or mixed artisanal rennet with calf rennet (cheese B).The acid degree value and the free fatty acids (FFA) contents in both cheeses increased sharply up to 18 d (pre-ripening period at 15 °C) and continued to increase throughout ripening. In both mature cheeses, acetic acid was found at high levels (13–18% of the total FFAs). However, except for this, all FFA contents differed significantly (P < 0.05) between the two cheeses throughout ripening. The levels of individual and total C2:0–C8:0, C10:0–C14:0 and C16:0–C18:2 fatty acids were significantly higher (P < 0.05) in cheese A than in cheese B. Presumably the difference, especially in the C2:0–C8:0 content, was due mainly to the type of the rennet used. Butyric acid was the dominant FFA in cheese A (20% of the total FFAs at 120 d), while the most abundant FFAs in cheese B were capric (18%) and lauric acid (18%). In general, the lipolysis degree of the two cheeses was higher than those reported for the industrially-made Feta cheese.In organoleptic evaluation, cheese A had a piquant taste that was attributed to its high content of butyric acid and showed a significantly (P < 0.05) higher total score than cheese B.  相似文献   

20.
 An indirect competitive enzyme-linked immunosorbent assay (ELISA) method was developed for the detection of bovine milk and caseinate in goats’ and ewes’ milk and cheese. Polyclonal antibodies were raised in rabbits and chickens against bovine γ3-casein. In a first affinity chromatography step, antibodies recognizing caseins were absorbed on bovine casein-Sepharose. From the dialysed eluate, antibodies crossreacting with ewes’ and goats’ milk protein were completely removed by immunoadsorption onto stationary phases containing ovine casein and protein extracted from genuine ewes’ and goats’ milk cheese. The detection limit of the ELISA test was 0.1% and the method was applied successfully during an EU collaborative study of the evaluation of methods for the detection of cows’ milk. Received: 15 February 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号