首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we present the further characterization of a mutant Jurkat T cell line, J.CaM2, that is defective in TCR-mediated signal transduction. Although initial TCR-mediated signaling events such as the inducible tyrosine phosphorylation of the TCR-zeta chain and ZAP-70 are intact in J.CaM2, subsequent events, including increases in intracellular calcium, Ras activation, and IL-2 gene expression are defective. Subsequent analysis of J.CaM2 demonstrated a severe deficiency in pp36/LAT expression, a recently cloned adaptor protein implicated in TCR signaling. Importantly, reexpression of LAT in J.CaM2 restored all aspects of TCR signaling. These results demonstrate a necessary and exclusive role for LAT in T cell activation.  相似文献   

2.
The potential role of the cytoskeleton in signaling via the T cell antigen receptor (TCR) was investigated using pharmacological agents. In Jurkat T cells, disruption of the actin-based cytoskeleton with cytochalasin D or disruption of the microtubules with colchicine did not affect TCR induction of proximal signaling events triggered by CD3 mAb. Polymerized actin and tubulin, therefore, were not required for TCR-mediated signal transduction. Nocodazole, however, was found to inhibit dramatically TCR signaling, independently of its ability to depolymerize microtubules. This effect was TCR-specific, because signaling via the human muscarinic acetylcholine receptor 1 in the same cells was unaffected. A mechanism for the inhibition of TCR signaling by nocodazole was suggested by in vitro assays, which revealed that the drug inhibited the kinase activity of LCK and, to a lesser extent, FYN. The kinase activity of ZAP-70 in vitro, however, was unaffected. These results, therefore, suggested that nocodazole prevented initial phosphorylation of the TCR by LCK after stimulation, and as a result, it blocked activation of downstream signaling pathways. Immunofluorescence analyses also revealed that nocodazole and the specific SRC-family kinase inhibitor PP1 delocalized ZAP-70 from its constitutive site at the cell cortex. These effects did not require the SH2 domains of ZAP-70. The localization of ZAP-70 to the cell cortex is, therefore, regulated by the activity of SRC-family kinases, independently of their ability to phosphorylate immunoreceptor tyrosine-based activation motifs of the TCR.  相似文献   

3.
Src homology 2 (SH2) domain-containing phosphotyrosine phosphatases (SHPs) are increasingly being shown to play critical roles in protein tyrosine kinase-mediated signaling pathways. The role of SHP-1 as a negative regulator of T cell receptor (TCR) signaling has been established. To further explore the function of the other member of this family, SHP-2, in TCR-mediated events, a catalytically inactive mutant SHP-2 was expressed under an inducible promoter in Jurkat T cells. Expression of the mutant phosphatase significantly inhibited TCR-induced activation of the extracellular-regulated kinase (ERK)-2 member of the mitogen-activated protein kinase (MAPK) family, but had no effect on TCR-zeta chain tyrosine phosphorylation or TCR-elicited Ca2+ transients. Inactive SHP-2 was targeted to membranes resulting in the selective increase in tyrosine phosphorylation of three membrane-associated candidate SHP-2 substrates of 110 kD, 55-60 kD, and 36 kD, respectively. Analysis of immunoprecipitates containing inactive SHP-2 also indicated that the 110-kD and 36-kD Grb-2-associated proteins were putative substrates for SHP-2. TCR-stimulation of Jurkat T cells expressing wild-type SHP-2 resulted in the formation of a multimeric cytosolic complex composed of SHP-2, Grb-2, phosphatidylinositol (PI) 3'-kinase, and p110. A significant proportion of this complex was shown to be membrane associated, presumably as a result of translocation from the cytosol. Catalytically inactive SHP-2, rather than the wild-type PTPase, was preferentially localized in complex with Grb-2 and the p85 subunit of PI 3'-kinase, suggesting that the dephosphorylating actions of SHP-2 may regulate the association of these signaling molecules to the p110 complex. Our results show that SHP-2 plays a critical role in linking the TCR to the Ras/MAPK pathway in Jurkat T cells, and also provide some insight into the molecular interactions of SHP-2 that form the basis of this signal transduction process.  相似文献   

4.
5.
6.
The Syk family tyrosine kinases play a crucial role in antigen receptor-mediated signal transduction, but their regulation and cellular targets remain incompletely defined. Following receptor engagement, phosphorylation of tyrosine residues within ZAP-70 and Syk is thought to control both kinase activity and recruitment of modulatory factors. We report here the characterization of novel mutants of ZAP-70 and Syk, in which conserved C-terminal tyrosine residues have been replaced by phenylalanines (ZAP YF-C, Syk YF-C). Both mutant kinases display a prominent gain-of-function phenotype in Jurkat T cells, as demonstrated by lymphokine promoter activation, tyrosine phosphorylation of potential targets in vivo, and elevated intracellular calcium mobilization. While the presence of p56-Lck was required for ZAP YF-C-induced signaling, Syk YF-C showed enhanced functional activity in Lck-deficient JCaM1 Jurkat cells. Our results implicate the C terminus of Syk family kinases as an important regulatory region modulating T cell activation.  相似文献   

7.
8.
Protein tyrosine phosphorylation and other biochemical events have been shown to occur after cross-linking of Fc epsilonRI in rodent mast cells. To investigate the mechanism of Fc epsilonRI signal transduction in human mast cells, we used human cultured mast cells (HCMC) generated from cord blood cells in the presence of recombinant human stem cell factor and IL-6. We found that on cross-linking of Fc epsilonRI: 1) HCMC released histamine; 2) rapid tyrosine phosphorylation of multiple cellular substrates, including Syk, HS1, c-Cbl, ERK-1, and ERK-2, was observed; 3) intracellular Ca2+ and inositol phosphate production were increased within the first minute after Fc epsilonRI cross-linking; and 4) genistein, a tyrosine kinase inhibitor, inhibited both protein tyrosine phosphorylation and histamine release in a dose-dependent manner. These results were consistent with previous studies in rodent mast cells. In contrast, no tyrosine phosphorylation of phospholipase C gamma1 and Btk (Bruton's tyrosine kinase) were observed in our experimental conditions. These results suggest that the greater part of the early and late signaling events in HCMC is similar to those obtained with rodent mast cells and indicated that the requirement of tyrosine phosphorylation in the activation process of each of the signaling molecules might be different in HCMC and rodent mast cells. Our finding indicates that HCMC may be useful for analysis of Fc epsilonRI-mediated signal transduction in human mast cells.  相似文献   

9.
Phosphatidylcholine-phospholipase D has been proposed to play a key role in the transduction of the proliferative responses of a wide range of mitogens and growth factors. We now report that the antigen receptors on T lymphocytes derived from human tonsillar or murine splenic preparations are coupled to phosphatidylcholine (PtdCho)-phospholipase D (PLD) activation following stimulation of these T cells with anti-CD3 antibodies. However, since we also demonstrate that the antigen receptors on murine thymocytes are coupled to PtdCho-PLD activation, we propose that it is unlikely that this PLD pathway plays a central role in the transduction of T-cell proliferative responses, but rather, may be involved in either driving cells into cycle or maintaining cell cycle progression, processes required both for proliferation and activation-induced cell death. Whilst the molecular mechanisms underlying T-cell receptor (TCR)-coupling to PtdCho-PLD activation in these cells have not been fully defined, kinetics studies and experiments using pharmacological inhibitors of protein tyrosine phosphatases (PTPases) and reconstituting CD3-coupled PtdCho-PLD activity in streptolysin-O permeabilized cells, suggest that the TCR/CD3 complex, under optimal conditions of activation, may be predominantly coupled to PtdCho-PLD activation downstream of tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma), phosphatidylinositol (PtdIns)P2 hydrolysis, calcium mobilization and protein kinase C (PKC) activation.  相似文献   

10.
Muscarinic receptors expressed by rat oligodendrocyte primary cultures were examined by measuring changes in second messengers following exposure to carbachol, an acetylcholine analog, and by polymerase chain reaction. Inositol phosphate levels were measured in [3H]myo-inositol-labelled young oligodendrocyte cultures following stimulation with carbachol. Atropine, a specific muscarinic antagonist, prevented the carbachol-induced accumulation of inositol phosphates. The formation of inositol trisphosphate was concentration- and time-dependent, with the peak at 100 microM carbachol and 10 min. Carbachol increased intracellular calcium levels, which were dependent both on the mobilization of intracellular stores and influx of extracellular calcium. In initial experiments with more selective antagonists, the mobilization of intracellular calcium was preferentially inhibited by pirenzepine, a selective M1 antagonist, but not methoctramine, a selective M2 antagonist, suggesting M1 muscarinic receptor involvement. A role for protein kinase C in the regulation of carbachol-stimulated inositol phosphate formation and intracellular calcium mobilization was demonstrated, as acute pretreatment with phorbol-12,13-myristate acetate abolished the formation of both second messengers. Pretreatment with 100 microM carbachol abolished the 40% increase in the cyclic AMP accumulation stimulated by isoproterenol, a specific beta-adrenergic agonist. In turn, the inhibition was alleviated by pretreatment with atropine, suggesting muscarinic receptor involvement. Polymerase chain reaction carried out with specific m1 and m2 muscarinic receptor oligonucleotide primers, confirmed that these cells express, at least, the two muscarinic receptor subtypes. Without excluding the expression of other subtypes, these results suggest that developing oligodendrocytes express m1 (M1) and m2 (M2) muscarinic receptors capable of mediating phosphoinositide hydrolysis, mobilization of intracellular calcium and the attenuation of beta-adrenergic stimulation of cyclic AMP formation.  相似文献   

11.
Signals delivered through the beta/gp33 (pre-TCR) and T-cell receptor alpha beta control proliferation and differentiation of thymocytes at two distinct control points of T cell maturation. Interaction between T-cell receptor (TCR) and peptide/MHC complex induce signaling pathways leading to activation of T cell. Signal transduction involves CD3 zeta phosphorylation by Lck tyrosine kinase and activation of ZAP-70 which regulates signaling pathways through PKC, Ca++ and Ras/Raf kinase cascade. Appropriate response of cell is preceded by integration of different signals in the nucleus.  相似文献   

12.
Though insulin signalling is thought by many groups to function without second messenger action, others have provided evidence for the existence and action of such regulators. Chemically quite different compounds, however, have been proposed as mediators, such as various inositol phosphoglycans and prostaglandylinositol cyclic phosphate (cyclic PIP). In spite of marked structural differences, these compounds are reported to have the same regulatory properties, i.e. to activate protein ser/thr phosphatases and to inhibit protein kinase A. In order to clarify this discrepancy, the regulatory potency of these different compounds was assayed under identical conditions. It was found that in contrast to cyclic PIP, the synthetic inositol phosphoglycan PIG41 neither directly inhibited protein kinase A nor activated protein ser/thr phosphatases. However, when added to intact cells, such as primary adipocytes, PIG41 inhibited isoproterenol-stimulated lipolysis. This effect most likely results from tyrosine phosphorylation of insulin receptor substrates (IRSs) by PIG41. This tyrosine phosphorylation is not carried out by the insulin receptor tyrosine kinase but by cytosolic tyrosine kinases. This indicates that cyclic PIP, an intracellular regulator, which primarily acts on protein kinase A and on protein ser/thr phosphatases, operates more downstream in the signal transduction cascade as compared to the inositol phosphoglycan PIG41. Thus, cyclic PIP appears to be a suitable candidate to close the gap between IRSs and the protein kinases/phosphatases involved in the signal transduction of insulin.  相似文献   

13.
Mesangial cell proliferation is a key feature of glomerulonephritis. The hydroxymethylglutaryl-coenzyme A reductase inhibitor lovastatin is known to inhibit cell cycle progression. To determine the inhibitory mechanisms of mesangial cell proliferation by lovastatin, the cyclin-dependent kinase (CDK) activity, and expression of CDK inhibitor (p27Kip1, p21Cip1, and p16INK4) mRNA and protein were measured. Lovastatin inhibited phosphorylation of retinoblastoma protein and mesangial cell proliferation dose dependently. Lovastatin increased the p27Kip1 protein level but produced no changes in the abundance of the p27Kip1 mRNA level both in the presence and absence of mitogens. Treatment with lovastatin revealed the increment of both CDK2- and CDK4-bound-p27Kip1. The experiment using antisense oligonucleotide against p27Kip1 showed significant amelioration of lovastatin-induced cell cycle arrest. Lovastatin reduced both platelet-derived growth factor-stimulated CDK2 and CDK4 kinase activities. In conclusion, lovastatin inhibited mesangial proliferation via translational upregulation or impairment of p27Kip1 protein degradation. Lovastatin serves as a potential therapeutic approach to mesangial proliferative disease.  相似文献   

14.
An anti-allergic drug, permirolast potassium (TBX), inhibited antigen (Ag)-induced phospholipase D (PLD) activation in rat basophilic leukemia (RBL-2H3) cells. The concentration-dependent inhibitory profile for Ag-induced PLD activation was parallel to those for secretory response and inositol phosphate formation. In contrast, TBX had no effect on PLD activation caused by calcium ionophore A23187 or phorbol myristate acetate. These results suggest that TBX inhibits Ag-induced PLD activation by interfering with the signal transduction pathway upstream of Ca2+ mobilization and protein kinase C activation.  相似文献   

15.
Treatment of Swiss 3T3 cells with cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli and dermonecrotic toxin (DNT) from Bordetella bronchiseptica, which directly target and activate p21(rho), stimulated tyrosine phosphorylation of focal adhesion kinase (p125(fak)) and paxillin. Tyrosine phosphorylation induced by CNF1 and DNT occurred after a pronounced lag period (2 h), and was blocked by either lysosomotrophic agents or incubation at 22 degrees C. CNF1 and DNT stimulated tyrosine phosphorylation of p125(fak) and paxillin, actin stress fiber formation, and focal adhesion assembly with similar kinetics. Cytochalasin D and high concentrations of platelet-derived growth factor disrupted the actin cytoskeleton and completely inhibited CNF1 and DNT induced tyrosine phosphorylation. Microinjection of Clostridium botulinum C3 exoenzyme which ADP-ribosylates and inactivates p21(rho) function, prevented tyrosine phosphorylation of focal adhesion proteins in response to either CNF1 or DNT. In addition, our results demonstrated that CNF1 and DNT do not induce protein kinase C activation, inositol phosphate formation, and Ca2+ mobilization. Moreover, CNF1 and DNT stimulated DNA synthesis without activation of p42(mapk) and p44(mapk) providing additional evidence for a novel p21(rho)-dependent signaling pathway that leads to entry into the S phase of the cell cycle in Swiss 3T3.  相似文献   

16.
Oral therapy with linomide protects prediabetic nonobese diabetic (NOD) mice from insulin-dependent diabetes mellitus. The mechanisms by which linomide exerts its protective effect are not fully understood. A decreased TCR-mediated activity of the GTP-GDP binding p21(ras) proto-oncogene is associated with prediabetes in NOD mice. However, the role of this signal transduction defect in the pathogenesis of autoimmune diabetes is not known. The TCR-mediated and protein kinase C-induced activations of p21(ras) were determined in mononuclear cells from lymph nodes of linomide-treated and untreated prediabetic NOD mice. TCR cross-linking by Con A induced an increase of 13 +/- 6.8% and a decrease of 0.8 +/- 1.8% in p21(ras) activity in the linomide-treated group and the untreated controls, respectively. Cell stimulation with PMA resulted in a 15 +/- 2% increase in p21(ras) activity in the linomide-treated mice and a 10 +/- 11.4% decrease in the untreated mice. Protein levels of p21(ras) and its regulatory elements, the GTPase-activating protein and the guanine nucleotide-releasing factor, mSOS, were comparable in both groups. We, therefore, conclude that prevention of autoimmune diabetes by linomide is associated with up-regulation of the p21(ras) T cell signal transduction defect in NOD mice.  相似文献   

17.
The surface immunoglobulin M (sIgM)-associated src family protein tyrosine kinases (PTKs) p55blk, p59fyn, and p53/56lyn become activated in B cells within seconds following sIgM cross-linking. Studies using protein tyrosine kinase (PTK) inhibitors have demonstrated that PTK activity is crucial for downstream events such as calcium flux, inositol phospholipid hydrolysis, and cell cycle entry. The roles that the individual src family PTKs play in sIgM signaling are largely unknown, however. In order to determine whether p59fyn plays a distinct role in sIgM signal transduction, the signaling capabilities of B cells isolated from fyn "knockout" mice were evaluated. We observed that in the absence of p59fyn, there was no demonstrable compromise of the sIgM-coupled signaling events measured (tyrosine phosphorylation, inositol phospholipid hydrolysis, and Ca2+ flux). We propose that either p59fyn is not involved in coupling sIgM to these specific signaling pathways or that other PTKs are able to compensate for the absence of p59fyn, indicating redundancy in the sIgM signaling pathways.  相似文献   

18.
Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4) is a cell surface receptor expressed on activated T cells that can inhibit T cell responses induced by activation of the TCR and CD28. Studies with phosphorylated peptides based on the CTLA-4 intracellular domain have suggested that tyrosine phosphorylation of CTLA-4 may regulate its interactions with cytoplasmic proteins that could determine its intracellular trafficking and/or signal transduction. However, the kinase(s) that phosphorylate CTLA-4 remain uncharacterized. In this report, we show that CTLA-4 can associate with the Src kinases Fyn and Lck and that transfection of Fyn or Lck, but not the unrelated kinase ZAP70, can induce tyrosine phosphorylation of CTLA-4 on residues Y201 and Y218. A similar pattern of tyrosine phosphorylation was found in pervanadate-treated Jurkat T cells stably expressing CTLA-4. Phosphorylation of CTLA-4 Y201 in Jurkat cells correlated with cell surface accumulation of CTLA-4. CTLA-4 phosphorylation induced the association of CTLA-4 with the tyrosine phosphatase SHP-2, but not with phosphatidylinositol 3-kinase. In contrast, Lck-induced phosphorylation of CD28 resulted in the recruitment of phosphatidylinositol 3-kinase, but not SHP-2. These findings suggest that phosphorylation of CD28 and CTLA-4 by Lck activates distinct intracellular signaling pathways. The association of CTLA-4 with Src kinases and with SHP-2 results in the formation of a CTLA-4 complex with the potential to regulate T cell activation.  相似文献   

19.
The T-cell receptor (TCR) zeta subunit is an important component of the TCR complex, involved in signal transduction events following TCR engagement. In this study, we showed that the TCR zeta chain is constitutively tyrosine phosphorylated to similar extents in thymocytes and lymph node T cells. Approximately 35% of the tyrosine-phosphorylated TCR zeta (phospho zeta) precipitated from total cell lysates appeared to be surface associated. Furthermore, constitutive phosphorylation of TCR zeta in T cells occurred independently of antigen stimulation and did not require CD4 or CD8 coreceptor expression. In lymph node T cells that constitutively express tyrosine-phosphorylated TCR zeta, there was a direct correlation between surface TCR-associated protein tyrosine kinase (PTK) activity and expression of phospho zeta. TCR stimulation of these cells resulted in an increase in PTK activity that coprecipitated with the surface TCR complex and a corresponding increase in the levels of phospho zeta. TCR ligations also contributed to the detection of several additional phosphoproteins that coprecipitated with surface TCR complexes, including a 72-kDa tyrosine-phosphorylated protein. The presence of TCR-associated PTK activity also correlated with the binding of a 72-kDa protein, which became tyrosine phosphorylated in vitro kinase assays, to tyrosine phosphorylated TCR zeta. The cytoplasmic region of the TCR zeta chain was synthesized, tyrosine phosphorylated, and conjugated to Sepharose beads. Only tyrosine-phosphorylated, not nonphosphorylated, TCR zeta beads were capable of immunoprecipitating the 72-kDa protein from total cell lysates. This 72-kDa protein is likely the murine equivalent of human PTK ZAP-70, which has been shown to associate specifically with phospho zeta. These results suggest that TCR-associated PTK activity is regulated, at least in part, by the tyrosine phosphorylation status of TCR zeta.  相似文献   

20.
One of the functions of surface CD38 is the induction of phosphorylation of discrete cytoplasmic substrates and mobilization of cytoplasmic calcium (Ca2+). The present work addresses the issue of whether the signaling mediated via CD38 operates through an independent pathway or, alternatively, is linked to the TCR/CD3 signaling machinery. We studied the signals elicited through CD38 by the specific agonistic IB4 monoclonal antibody (mAb) by monitoring the levels of cytoplasmic Ca2+ and the induced phenotypic and functional variations in T cell growth. IB4 mAb presented the unique ability to increase cytoplasmic Ca2+ levels, which correlated with the phosphorylation of the PLC-gamma1. These effects were blocked by phorbol 12-myristate 13-acetate (PMA) and were dependent on the presence of a functional TCR/CD3 surface complex, no effects being recorded on mutant Jurkat cells lacking part of the CD3 structures. CD38 signaling appeared to share with TCR/CD3 the ability to induce apoptotic cell death in Jurkat T cells, an event paralleled by specific up-regulation of the Fas molecule and inhibited by cyclosporin A. CD28, a costimulatory molecule, is synergized by increasing CD38-induced apoptotic cell death. The results indicate the existence of a strong functional interdependence between CD38 and TCR/CD3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号