首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对开发高性能电力铁塔角钢Q460TE进行了研究,并讨论了合金成分、终轧温度以及轧后冷却方式等对其组织性能的影响。结果表明:Al元素可以改善角钢的冲击韧性;轧后经强制冷却,其边部组织为回火索氏体,晶粒度等级约为9.5级,心部组织为铁素体+珠光体;热轧钢材的显微组织与性能随终轧温度的降低均得到较大幅度的改善,当终轧温度为852 ℃时,其屈服强度为540 MPa,抗拉强度为660 MPa,-40℃时的冲击功为172.9 J。  相似文献   

2.
Correlation of rolling conditions, microstructure, and low-temperature toughness of high-toughness X70 pipeline steels was investigated in this study. Twelve kinds of steel specimens were fabricated by vacuum-induction melting and hot rolling, and their microstructures were varied by rolling conditions. Charpy V-notch (CVN) impact test and drop-weight tear test (DWTT) were conducted on the rolled steel specimens in order to analyze low-temperature fracture properties. Charpy impact test results indicated that the energy transition temperature (ETT) was below −100 °C when the finish cooling temperature range was 350 °C to 500 °C, showing excellent low-temperature toughness. The ETT increased because of the formation of bainitic ferrite and martensite at low finish cooling temperatures and because of the increase in effective grain size due to the formation of coarse ferrites at high finish cooling temperatures. Most of the specimens also showed excellent DWTT properties as the percent shear area well exceeded 85 pct, irrespective of finish rolling temperatures or finish cooling temperatures, although a large amount of inverse fracture occurred at some finish cooling temperatures.  相似文献   

3.
In this study, the effect of finish rolling temperature and coiling temperature on the microstructure and mechanical properties of high-Al-low-Si dual-phase (DP) steels is explored. Two different finish rolling temperatures (850 and 790°C) and three different coiling temperatures (200, 250 and 300°C) were studied. The results indicated that all the different processing conditions led to ferrite-martensite DP microstructure. With the decrease in finish rolling temperature, the volume fraction of ferrite was increased and martensite content was decreased. When the coiling temperature was increased to 300°C, autotempered martensite was obtained, which led to the softening of martensite and decrease in tensile strength and strain hardening ability, but higher post-necking elongation. Moreover, the nanoscale Nb-based carbides played a crucial role in refining the microstructure of hot-rolled high-Al-low-Si DP steel. EBSD (Electron Backscattered Diffraction) analysis revealed that the ferrite grains were fine, and decrease in finish rolling temperature and coiling temperature led to an increase in low-angle boundaries. When the finish rolling temperature was decreased to 790°C and coiling temperature was decreased to 200°C, the steel had excellent mechanical properties with tensile strength of 885?MPa, uniform and total elongation of 16.0 and 25.94%, respectively, and the product of tensile strength and total elongation was 20?264?MPa%. The improvement of strength and plasticity can be attributed to the fraction of ferrite and martensite, precipitation of NbC, fine microstructure.  相似文献   

4.
为开发强度级别为685MPa的高强钢板的控轧控冷工艺,研究了终轧温度,未再结晶区累积压下量,终冷温度,冷却速度等工艺参数对钢的显微组织和力学性能的影响。实验结果表明,在控轧控冷条件下,钢的室温显微组织由铁素体和贝氏体组成,贝氏体主要以粒状贝氏体为主,此外,晶粒细化是提高钢的强度和韧性的最有效的手段。  相似文献   

5.
通过连续冷却相转变行为的研究,利用试验轧机成功试制了24mm厚,屈服强度460MPa级耐候钢板,并分析了钢板微观组织、力学性能、腐蚀性能以及焊接性能。连续相转变行为和钢板试制结果表明:精轧温度不大于850℃,厚度压下率不小于0.6,冷速为4~15℃/s和终冷温度不大于465℃可得到以针状铁素体(3~10μm)和多边形铁素体(5~15μm)为主的钢板,其屈服强度不小于480MPa,抗拉强度不小于635MPa,伸长率不小于23%,-40℃冲击功不小于209J。对试制钢板进行了热输入量为72kJ/cm的双丝埋弧焊接试验,无焊前预热和焊后热处理,得到了无缺陷焊接接头,焊接热影响区-40℃冲击功不小于100J;粗晶区的高韧性与其晶内铁素体为主以及少量晶界铁素体和上贝氏体的微观组织有关。72h周浸试验结果表明:试制钢种的耐大气腐蚀能力比普碳钢Q345B提高了46%。  相似文献   

6.
 采用光学显微镜、透射电子显微镜(TEM)、EDS能谱分析仪和拉伸冲击试验机,研究了终轧温度对TMCP(thermo-mechanical controlled processing)低合金铌钛贝氏体钢组织和性能的影响。结果表明:随着终轧温度的降低,强度和韧性先升高后降低。终轧温度为815 ℃时,由于冷却前温度已降低到奥氏体-铁素体两相区,在晶界形成大量先共析铁素体,造成了强度和韧性的下降。终轧温度为870 ℃时,得到细小的板条贝氏体+少量的马氏体组织,在贝氏体板条上有30~50 nm的Nb、Ti析出相弥散分布,获得了最优异的性能,其屈服强度为805 MPa,抗拉强度为1 005 MPa,-20 ℃冲击功的平均值为197 J。  相似文献   

7.
High-strength low-alloy (HSLA) steels were fabricated by varying thermomechanical processing conditions such as rolling and cooling conditions in the intercritical region, and the low-temperature toughening mechanism was investigated in terms of microstructure and the associated grain boundary characteristics. The steels acceleratedly cooled to relatively higher temperature had lower tensile strength than those acceleratedly cooled to room temperature due to the increased volume fraction of granular bainite or polygonal ferrite (PF) irrespective of rolling in the intercritical region, while the yield strength was dependent on intercritical rolling, and start and finish cooling temperatures, which affected the formation of PF and low-temperature transformation phases. The steel rolled in the intercritical region and cooled to 673 K (400 °C) provided the best combination of high yield strength and excellent low-temperature toughness because of the presence of fine PF and appropriate mixture of various low-temperature transformation phases such as granular bainite, degenerate upper bainite (DUB), lower bainite (LB), and lath martensite (LM). Despite the high yield strength, the improvement of low-temperature toughness could be explained by the reduction of overall effective grain size based on the electron backscattered diffraction (EBSD) analysis data, leading to the decrease in ductile-to-brittle transition temperature (DBTT).  相似文献   

8.
表层细晶化Q235中厚板轧制工艺的研究   总被引:1,自引:1,他引:0  
采用Q235成分的连铸板坯,在首钢中厚板厂3300mm轧机上进行了中板表层组织细晶化的工业轧制实验,研究了轧制温度、轧制变形量分配、待温期间冷却方式对板材组织和性能的影响。结果表明,在奥氏体低温区增加精轧总变形量可以实现20mm成品板材的表层组织细化,屈服强度达到300MPa左右,铁素体晶粒达到8.5级,增加待温期间中间坯的水幕冷却有利于整个板材厚度截面的组织细化,屈服强度达到330MPa左右,铁素体晶粒达到9级,材料的强度接近Q345同规格板材的水平,具有优良的塑性和冲击韧性。  相似文献   

9.
 The microstructure characteristics and mechanical properties of a low-silicon TRIP steel containing phosphorus and vanadium at different finish rolling temperatures were studied by laboratory hot rolling experiments. Different ratios of multiphase microstructure (ferrite, granular bainite and retained austenite) are obtained. With a decrease in finish rolling temperature, the volume fractions of ferrite and retained austenite increase. EBSD analysis reveals that most of the ferrite grains are fine, and decreasing of finish rolling temperature leads to an increase in low angle boundaries. Under the joint effects of fine grain strengthening, dislocation strengthening and precipitation strengthening, higher strength is obtained. When the finish rolling temperature is decreased to 800 ℃, the steel has excellent mechanical properties: Rp02=470 MPa; Rm=960 MPa; Rp02/Rm=049; A50=197%; n=025.  相似文献   

10.
试验研究了Φ52 mm 45MnVTi钢终轧917~922 ℃水冷返红680~830 ℃的组织和力学性能。结果表明,随着返红温度的降低,钢材的屈服强度及抗拉强度不同程度的升高,韧性先升高再降低,组织类型为铁素体和珠光体。当返红温度750~770 ℃时,钢材组织为均匀细小的铁素体和珠光体组织,且试验钢的珠光体片间距平均2.39 μm;钢材的抗拉强度平均841 MPa,屈服强度平均547.5 MPa,平均冲击功50.5 J,强韧性匹配最佳,满足使用要求。  相似文献   

11.
为了研究TMCP工艺对Q370q E-HPS高性能桥梁钢组织和性能的影响,达到替代正火工艺的目的,对终轧温度、开冷温度、返红温度及冷却速率等TMCP关键工艺参数与组织、力学性能的关系进行分析。结果表明:采用两阶段控轧控冷工艺生产Q370q E-HPS钢时,随终轧温度升高、开冷温度降低、返红温度升高及冷却速度降低,铁素体晶粒尺寸增大,珠光体含量增加,屈强比降低。通过工艺参数优化,可获得合适尺寸和体积分数的铁素体和珠光体,实现Q370q E-HPS钢良好的强韧性匹配和较低的屈强比。  相似文献   

12.
An ultrafine microstructure was produced in plain C‐Mn steels with different carbon contents (0.15 ‐ 0.3 mass% C) by heavy warm deformation. The rolling was simulated by the plane strain compression test with a simulated post rolling coiling. The final microstructure consists of an ultrafine grained ferrite matrix with the average grain size of 1.1 ‐ 1.4 μm and spheroidized cementite particles of two different size groups. The fraction of high‐angle grain boundaries maintained in the range of 60% to 65%. With the increase of C content from 0.15 mass% to 0.3 mass% the strength increases by about 100 MPa, while the total elongation of 23% hardly changes. The (specific) upper shelf energy decreases from 320 J/cm2 to 236 J/cm2 but a rather low ductile‐to‐brittle transition temperature (DBTT) of about 206 K does not rise with increasing C content. The ultrafine steel with higher C content (0.3 mass%) exhibits a superior strength‐toughness combination.  相似文献   

13.
低温轧制对Φ50mm 45钢显微组织的影响   总被引:1,自引:0,他引:1  
以轧制Φ50 mm圆钢为例,分析了低温轧制工艺对45钢轧制和冷却过程中组织和性能的影响,降低开轧温度到950℃、终轧温度降低到945℃,可达到细化晶粒、提高钢材强韧性能的目的。轧后快速冷却时,可促使铁素体形核,铁素体和珠光体晶粒度为8.0级,且无魏氏组织出现。  相似文献   

14.
钒氮微合金化高强度球扁钢的强韧化机制   总被引:1,自引:0,他引:1  
针对球扁钢在孔型轧制时球头、腹板部位组织性能不均匀的问题,研究了钒氮微合金化技术改善高强度球扁钢截面均匀性的作用机制。采用ANSYS有限元模拟了球扁钢轧后冷却温度场的分布。结果表明,球扁钢轧后冷却过程中球头心部冷却较慢,腹板冷却较快。950℃终轧后冷却150S时,球头心部、腹板温度差异约为120℃;对比分析了钒和V—N...  相似文献   

15.
通过模拟实验研究了钛微合金化热轧双相钢的连续冷却转变曲线及终轧温度对组织的影响规律,获得了可行的工艺窗口,并进行了验证性热轧实验.在冷却速率小于5℃·s-1及温度在625~725℃时,实验钢可以形成先共析铁素体.随着终轧温度升高,组织中铁素体及马氏体含量先升高后降低,但幅度不大.同时,当终轧温度较高时,铁素体显微硬度增加,析出强化作用增加.当终轧温度及缓冷温度分别为840℃及700℃时,获得了抗拉强度为672 MPa及屈强比为0.61的性能良好的热轧双相钢.经计算,铁素体组织中析出强化量为78.5 MPa.   相似文献   

16.
 The correlation between microstructures and mechanical properties of a Nb-Ti microalloyed pipeline steel was investigated. The results revealed that with decreasing the finish rolling temperature and the cooling stop temperature, the matrix microstructure was changed from quasi-polygonal ferrite to acicular ferrite, as a result of improvement of both strength and low temperature toughness. By means of electron backscattered diffraction observation, an effective acicular ferrite packet contained several low angle boundaries or subboundaries plates which made important contributions to improvement of strength. It was found that many fine quasi-polygonal ferrite grains with high angle boundaries as the toughening structure were introduced into the acicular ferrite matrix to refine effective grain size and improve the toughness.  相似文献   

17.
屈服强度450 MPa级新型耐候钢研制   总被引:1,自引:0,他引:1  
郭慧英  张宇  王银柏  许红梅 《钢铁》2014,49(11):68-73
 通过连续冷却相转变行为研究,成功试制了20 mm厚屈服强度450 MPa级耐候钢板,并对钢板的显微组织、力学性能、耐腐蚀性能及焊接性能进行了分析。连续冷却相变行为和钢板试制结果表明:精轧温度约为850 ℃、累计压下率不小于0.6、轧后冷速为15~30 ℃/s、终冷温度不大于579 ℃可以得到以多边形铁素体(晶粒尺寸为3~10 μm)和退化珠光体为主并含有少量马奥岛(M-A组元)的钢板,其屈服强度和抗拉强度分别为458和557 MPa,伸长率不小于 28%,-60 ℃冲击功不小于 287 J,其优异的低温冲击韧性与钢板有效晶粒尺寸较小以及大角度晶界所占比例较高有关。72 h亚硫酸氢钠和氯化钠溶液周期性浸润试验结果显示,试制钢板的耐蚀性能比Q345B分别提高了约49%和40%。对试制钢板进行线能量为30 kJ/cm的埋弧焊焊接试验,得到的焊接接头热影响区熔合线处-40 ℃冲击功为156 J。  相似文献   

18.
新型细晶强化中厚板Q460的控轧控冷工艺研究   总被引:2,自引:0,他引:2  
通过热轧试验,对比研究了终轧温度及轧后冷却速度对综合力学性能的影响,研究发现:降低终轧温度可以提高钢的屈服强度和抗拉强度,对韧性的影响不大,其强度的提高主要以沉淀强化为主;冷却速度越快,铁素体晶粒越细,钢的强度和韧性越高。但冷速超过15℃/s时会发生贝氏体相变,考虑到钢的综合性能,湘钢Q460热轧时应将终轧温度控制在840℃-860℃之间,冷却速度控制在10~15℃/s为最佳。  相似文献   

19.
The effect of boron on the microstructures and mechanical properties of laboratory-control-rolled and direct-quenched 6-mm-thick steels containing 0.08 wt pct C and 0.02 wt pct Nb were studied. The boron contents were 24 ppm and a residual amount of 4 ppm. Two different finish rolling temperatures (FRTs) of 1093 K and 1193 K (820 °C and 920 °C) were used in the hot rolling trials to obtain different levels of pancaked austenite prior to DQ. Continuous cooling transformation (CCT) diagrams were constructed to reveal the effect of boron on the transformation behavior of these steels. Microstructural characterization was carried out using various microscopy techniques, such as light optical microscopy (LOM) and scanning electron microscopy-electron backscatter diffraction (SEM-EBSD). The resultant microstructures after hot rolling were mixtures of autotempered martensite and lower bainite (LB), having yield strengths in the range 918 to 1067 MPa with total elongations to fracture higher than 10 pct. The lower FRT of 1093 K (820 °C) produced better combinations of strength and toughness as a consequence of a higher degree of pancaking in the austenite. Removal of boron lowered the 34 J/cm2 Charpy-V impact toughness transition temperature from 206 K to 158 K (?67 °C to ?115 °C) when the finishing rolling temperature of 1093 K (820 °C) was used without any loss in the strength values compared to the boron-bearing steel. This was due to the finer and more uniform grain structure in the boron-free steel. Contrary to expectations, the difference was not caused by the formation of borocarbide precipitates, as verified by transmission electron microscopy (TEM) investigations, but through the grain coarsening effect of boron.  相似文献   

20.
对低碳V-N-Cr微合金化钢进行了控轧控冷实验,终冷后采用了随炉冷、保温毡缓冷、空冷3种冷却制度,并对3种不同冷却制度钢板进行了显微组织、综合力学性能和断口形貌的分析。研究表明,空冷钢板显微组织为细小多边形铁素体及针状铁素体复相组织,铁素体晶粒尺寸5~8μm,针状铁素体由交织的板条组成,宽度1~3μm。在随炉冷及保温毡缓冷时,由于冷却速率缓慢,多边形铁素体及针状铁素体发生了回火,并析出细小弥散的碳化物。3种冷却条件下,屈服强度均≥585 MPa,抗拉强度≥694 MPa,延伸率≥27%,而且1/2试样-60℃冲击功≥36 J,综合力学性能优于Q550F级国标要求。细晶强化、析出强化、组织强化为本钢种的主要强化方式,冲击断口均由韧窝组成,呈现韧性断裂模式,控轧控冷引起的晶粒细化及针状铁素体的形成有效阻碍解理裂纹的扩展,从而增强低温韧性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号