首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The removal of natural organic matter (NOM) using nanofiltration (NF) is increasingly becoming an option for drinking water treatment. Low molecular weight (LMW) organic compounds are nevertheless only partially retained by such membranes. Bacterial regrowth and biofilm formation in the drinking water distribution system is favoured by the presence of such compounds, which in this context are considered as the assimilable organic carbon (AOC). In this study, the question of whether NF produces microbiologically stable water was addressed. Two NF membranes (cut-off of about 300 Da) were tested with different natural and synthetic water samples in a cross-flow filtration unit. NOM was characterised by liquid chromatography with organic carbon detection (LC-OCD) using a size-exclusion column in addition to specific organic acid measurements, while AOC was measured in a batch growth bioassay.Similarly to high molecular weight organic compounds like polysaccharides or humic substances that have a permeability lower than 1%, charged LMW organic compounds were efficiently retained by the NF membranes tested and showed a permeability lower than 3%. However, LMW neutrals and hydrophobic organic compounds permeate to a higher extent through the membranes and have a permeability of up to 6% and 12%, respectively. Furthermore, AOC was poorly retained by NF and the apparent AOC concentration measured in the permeated water was above the proposed limit for microbiologically stable water. This indicates that the drinking water produced by NF might be biologically unstable in the distribution system. Nevertheless, in comparison with the raw water, NF significantly reduced the AOC concentration.  相似文献   

2.
The characteristics of water dechlorination by activated carbon filtration, u.v. irradiation and sodium sulphite injection were examined. A pilot plant water treatment system composed of sand and diatomaceous earth filtration, ozonation and activated carbon filtration was evaluated. Activated carbon did not completely eliminate chlorine under any conditions tested but the post-carbon chlorine concentrations were relatively insensitive to large variations in incoming chlorine levels and water flow rates. Carbon filtration also reduced total dissolved organic carbon concentrations by 65% and reduced various halogenated methane derivatives by 97–100%. Ultraviolet irradiation eliminated up to 99% of the total chlorine in municipal water but u.v.-dechlorination was sensitive to flow rate with a rate constant of 2.02 min−1 between 10 and 27 l min−1. Water temperatures ranging from 7.5 to 20.6°C did not affect the efficiency of dechlorination by activated carbon or u.v. irradiation. Sodium sulphite at a 3:1 molar ratio to chlorine completely eliminated chlorine from municipal water while a sulphite:chlorine ratio of 6:1 was required to completely dechlorinate water which had been partially dechlorinated by activated carbon. The results are discussed in relation to the design of a multi-stage system suitable for providing dilution water for aquatic toxicity studies and fish culture.  相似文献   

3.
An apparatus with flame ionization and photometric detectors was assembled for the simultaneous determination of dissolved organic carbon (DOC) and phosphorus (DP) in waters. The optimum operating conditions were described. The long-term precision (relative standard deviation) is 5.8% for DOC and 5.2% for DP. The detection limits are 0.09 μg ml−1 for DOC and 0.03 μg ml−1 for DP. The responses for various DOC and DP compounds agreed almost with those obtained by combustion-infrared and persulfate digestion-colorimetric methods, respectively. DOC and DP in several water samples were determined by this method and other methods, and the results obtained by those methods were discussed.  相似文献   

4.
Willison H  Boyer TH 《Water research》2012,46(7):2385-2394
Water treatment processes can cause secondary changes in water chemistry that alter finished water quality including chloride, sulfate, natural organic matter (NOM), and metal release. Hence, the goal of this research was to provide an improved understanding of the chloride-to-sulfate mass ratio (CSMR) with regards to chloride and sulfate variations at full-scale water treatment plants and corrosion potential under simulated premise plumbing conditions. Laboratory corrosion studies were conducted using Pb-Sn solder/Cu tubing galvanic cells exposed to model waters with low (approx. 5 mg/L Cl and 10 mg/L SO42-) and high (approx. 50 mg/L Cl and 100 mg/L SO42-) concentrations of chloride and sulfate at a constant CSMR of ∼0.5. The role of NOM during corrosion was also evaluated by changing the type of organic material. In addition, full-scale sampling was conducted to quantify the raw water variability of chloride, sulfate, and NOM concentrations and the changes to these parameters from magnetic ion exchange treatment. Test conditions with higher concentrations of chloride and sulfate released significantly more lead than the lower chloride and sulfate test waters. In addition, the source of NOM was a key factor in the amount of lead released with the model organic compounds yielding significantly less lead release than aquatic NOM.  相似文献   

5.
The contribution from impurities in chlorine to levels of chlorinated organics found in potable water after chlorination was investigated. Techniques for sampling of chlorine and gas chromatography (GC) determination of chlorinated organics in chlorine are described. The detection limits were better than 1 ppm for each of chloromethane, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, tetrachloroethylene, hexachloroethane, hexachloropropane and hexachlorobenzene in chlorine. With the exception of chloroform which occasionally accounted for nearly 1 μg l−1 in water, the levels of the nine compounds in chlorine accounted for less than 0.1 μg l−1 of each compound in chlorinated water from 10 Canadian treatment plants. The occurrence of these nine and 28 additional chlorinated organics previously detected in water supplies was determined by aid of liquid-liquid extraction of water samples. Seven compounds, including chloroform, carbon tetrachloride, trichloroethylene and tetrachloroethylene were detected, usually at levels ranging from 0.1 to 1 μg l−1 in chlorinated water from the treatment plant.  相似文献   

6.
Dissolved organic matter in estuarine water and seawater collected in the summers of 1980 and 1981 in the James River, Virginia and the mouth of Chesapeake Bay were separated into fractions according to their nominal molecular weights (NMW) by ultrafiltration. Estuarine waters contained higher concentrations of dissolved organic carbon (DOC). Among the fractions, between 66–89% of the DOC was found in the fraction with NMW below 10,000. Estuarine waters also had higher chlorine demands. At a dose of 5 mg l−1, in 23 h, about 90% of the added chlorine disappeared in estuarine waters, whereas, in seawater, only 60–75% of the chlorine had dissipated. At least two-thirds of the chlorine demand occurred in the first 5 h. About 10–30% of the chlorine demand may be attributed to the fraction with NMW above 10,000. The remaining chlorine demand was distributed almost equally between the fractions with ranges of NMW of 1000–10,000 and below 1000. If reactivity is measured in terms of organic chlorine demand (ΔClo) per unit weight of DOC, the fractions with lower NMW (< 1000 and 1000–10,000) always had a higher reactivity towards chlorine. Between these two fractions, the one with NMW between 1000 and 10,000 exhibited higher reactivity more frequently. The highest reactivity found was 1.4 mg ΔClo mg−1 DOC.  相似文献   

7.
More stringent legislation on dissolved organic matter (DOM) urges the drinking water industry to improve in DOM removal, especially when applied to water with high dissolved organic carbon (DOC) contents and low turbidity. To improve conventional processes currently used in drinking water treatment plants (DWTPs), the performances of a hybrid membrane bioreactor containing fluidised activated carbon were investigated at the DWTP of Rennes. Preliminary results showed that the residual DOC was the major part of the non-biodegradable fraction. In order to increase the global efficiency, an upstream oxidation step was added to the process. Ozone was chosen to break large molecules and increase their biodegradability. The first step consisted of carrying out lab-scale experiments in order to optimise the necessary ozone dose by measuring the process yield, in terms of biodegradable dissolved organic carbon (BDOC). Secondly, activated carbon adsorption of the DOC present in ozonated water was quantified. The whole process was tested in a pilot unit under field conditions at the DWTP of Rennes (France). Lab-scale experiments confirmed that ozonation increases the BDOC fraction, reduces the aromaticity of the DOC and produces small size organic compounds. Adsorption tests led to the conclusion that activated carbon unexpectedly removes BDOC first. Finally, the pilot unit results revealed an additional BDOC removal (from 0.10 to 0.15 mg L−1) of dissolved organic carbon from the raw water considered.  相似文献   

8.
The potential of bituminous coal for adsorption of viruses, using poliovirus as a model, was investigated. Influence of pH of water on the adsorption of viruses on a coal bed with and without addition of cation (Al3+) indicated that poliovirus could be adsorbed efficiently at pH 5 in presence of AlCl3 at a concentration of 0.0005 M. Studies on the effect of different concentrations of monovalent, divalent and trivalent cations showed that the trivalent cation was more effective and was required at a lower concentration than other cations tested. A coal bed of 1.5 g could adsorb as high as 204,000 PFU from water based on the absence of virus in the filtrate. Total organic carbon content (TOC, 21–51 mg 1−1) of the water did not interfere in virus adsorption to coal. The results obtained indicated that a bituminous coal bed could be used as one of the methods for efficient concentration of viruses from water.  相似文献   

9.
This study aims to investigate the state of the riverine organic carbon in the Luodingjiang River under human impacts, such as reforestation, construction of reservoirs and in-stream damming. Seasonal and spatial characteristics of total suspended sediment (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as C/N ratios and the stable carbon isotopic signatures of POC (δ13CPOC) were examined based on a one-year study (2005) in the basin-wide scale. More frequent sampling was conducted in the outlet of the river basin at Guanliang hydrological station. DOC and POC concentrations showed flush effects with increasing water discharge and sediment load in the basin-wide scale. Atomic C/N ratio of POC had a positive relationship with TSS in the outlet of the basin, indicating the reduced aquatic sources and enhanced terrestrial sources during the high flood season. However, the similar relationship was not observed in the basin-wide scale mainly due to the spatial distributions of soil organic carbon and TSS. δ13CPOC showed obvious seasonal variations with enriched values in the period with high TSS concentration, reflecting the increased contribution from C4 plants with enhanced soil erosion.The specific flux of the total organic carbon (2.30 t km− 2 year− 1) was smaller than the global average level. The ratio of DOC to POC was 1.17, which is higher than most rivers under Asian monsoon climate regime. The organic carbon flux was estimated to decline with decreasing sediment load as a result of reforestation, reservoir construction and in-stream damming, which demonstrates the impacts of human disturbances on the global carbon cycle.  相似文献   

10.
The behaviour of Cu, Pb, Zn and Cd in a highly stratified estuary was examined. The distribution of ionic and ‘organically bound” forms of the metals was determined by differential pulse anodic stripping voltammetry (dpasv) before and after u.v. irradiation. The two forms of the metals were compared with the water characteristics of salinity, temperature, turbidity, flow, and inorganic and organic carbon.Irradiation increased the concentration of all four elements detectable by dpasv. The greatest increase was for Cu in the 1 m depth river water which yielded 7.5 μg l−1 before irradiation and 29 μg l−1 after irradiation. Cu and Cd showed minimum concentrations in the seawater layer at 4 m depth, corresponding to the fresh seawater flowing upstream below the halocline. The concentrations of Cu and Cd were higher in the river water than in the underlying seawater. Zn concentration in the river water was lower than in the seawater. Relationships between the trace metal concentrations and the characteristics of the water column are not clear, but the direction of water movement is a major influence.  相似文献   

11.
A study was conducted to evaluate the effectiveness of chemical and physical wastewater treatment processes in removing selected organic pesticides from domestic wastewater. A 3785 m3 day−1 (1 MGD) nominal capacity pilot plant consisting of biological, chemical and physical units was used for the study. Biologically treated domestic wastewater was subjected to chemical coagulation, multimedia filtration, and activated carbon adsorption. Eight sequences of treatment processes were studied. Influent and effluent samples were analyzed for selected chlorinated hydrocarbon pesticides and chlorophenoxy herbicides using EC-GC. Confirmatory tests such as TLC, extraction of p-value and CPU-MS-GC were applied on selected samples. Results of the study provided qualitative and quantitative evaluation of the performance of the treatment processes studied. Qualitatively characteristic profiles consisting of a limited number of refractory organic residues were detected as peaks on EC chromatograms of extracts from each treatment unit. Thirteen compounds were confirmed in the biologically treated wastewater. These included DDT and its metabolites, aldrin, dieldrin, and 2,4-D alkyl esters and salts. Concentration levels of these compounds in wastewaters were at the ng l−1 (part per trillion) level. Chemical coagulation with alum-lime or lime-ferric chloride was found to effect slight reduction of the organic residues detected on EC chromatograms. Quantitatively only DDT compounds were more completely removed by chemical treatment. Multimedia filters had no discernible effect in removing organic residues from biologically and chemically treated wastewater. Activated carbon columns were found to be the most effective means for removing the refractory organic residues detected. However, breakthrough of some organic residues was noted after usage of the carbon for over 1 year. The overall results of the study showed that application of several sequences of treatment processes on domestic wastewater can produce a high quality effluent which is virtually free from EC detectable organic residues.  相似文献   

12.
Studies on PM 10, total particulate matter (TSP), elemental carbon (EC) and organic carbon (OC) concentrations were carried out in the Polish coastal zone of the Baltic Sea, in urbanized Gdynia. The interaction between the land, the air and the sea was clearly observed. The highest concentrations of PM 10, TSP and both carbon fractions were noted in the air masses moving from southern and western Poland and Europe. The EC was generally of primary origin and its contribution to TSP and PM 10 mass was on average 2.3% and 3.7% respectively. Under low wind speed conditions local sources (traffic and industry) influenced increases in elemental carbon and PM 10 concentrations in Gdynia. Elemental carbon demonstrated a pronounced weekly cycle, yielding minimum values at the weekend and maximum values on Thursdays. The role of harbors and ship yards in creating high EC concentrations was clearly observed. Concentration of organic carbon was ten times higher than that of elemental carbon, and the average OC contribution to PM 10 mass was very high (31.6%). An inverse situation was observed when air masses were transported from over the Atlantic Ocean, the North Sea and the Baltic Sea. These clean air masses were characterized by the lowest concentrations of all analysed compounds.Obtained results for organic and elemental carbon fluxes showed that atmospheric aerosols can be treated, along with water run-off, as a carbon source for the coastal waters of the Baltic Sea. The enrichment of surface water was more effective in the case of organic carbon (0.27 ± 0.19 mmol m2 d1). Elemental carbon fluxes were one order of magnitude smaller, on average 0.03 ± 0.04 mmol m2 d1. We suggest that in some situations atmospheric carbon input can explain up to 18% of total carbon fluxes into the Baltic coastal waters.  相似文献   

13.
Conditions for direct analyses of various aliphatic compounds in water by the recently developed steam carrier gas chromatography (SCGC) were studied using a hydrogen flame ionization detector and acid washed Chromosorb P modified with 3.5 ± 0.3 wt% of phosphoric acid as a stationary solid in 2 mm i.d. × 2 m glass column. A flowrate of approx. 60 ml min−1 of carrier steam and a column temperature of 150–180°C were considered to be the optimum conditions for analysing water samples containing several groups of aliphatic compounds. The relationship between the retention time and the boiling point was obtained for two groups of soluble and slightly soluble compounds. The retention time of an aliphatic compound can, therefore, be predicted from its boiling point and solubility, and conversely, the compounds in an unknown sample can be characterized for identification from their retention times. The relative peak area increased proportionally with increase of the effective number of carbon atoms in the compound. By SCGC, various aliphatic compounds present in water at concentrations higher than approx. 40 μg 1−1 can be analysed directly including some polar compounds which are difficult to analyze by conventional gas chromatography without complicated pre-treatment.  相似文献   

14.
This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes (13C and 14C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4–14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88–98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39–65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29–50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4–6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.  相似文献   

15.
The transfer of carbon from terrestrial peat to the fluvial environment forms an important component of the peatland carbon cycle, and has major implications for water quality. Dissolved organic carbon (DOC) is generally considered the largest constituent of aquatic carbon and tends to be the most intensively monitored, particularly in peatland catchments. However, many long-term records for DOC are based on proxy studies that use water colour as a surrogate. This paper tests the robustness of using spectrophotometric techniques to monitor water colour, based on absorbance from a single wavelength at 400 nm, as a surrogate for true DOC determination. The general ability of spectrophotometric analysis to measure low DOC concentrations depends on the calibration used; thus, the minimum mass of DOC detectable varies considerably and in this study was found to be as high as 10.32 mg C L− 1. While there is often a significant correlation between water colour and DOC, it was found that the use of single or even “pooled” regressions to predict DOC concentrations could result in miscalculations of more than 50%. Further, the water colour-DOC relationship in blanket peat pore waters was found to vary significantly between peat layers, land management treatments and through time. Thus, studies using long-term water colour records as a proxy for long-term DOC concentrations in peatlands must be treated with a certain degree of caution, especially in cases where changes may have taken place to DOC production, such as those caused by land management change, during the course of investigation.  相似文献   

16.
Characterisation of the concentrations and potential health risks of chemicals in recycled water is important if this source of water is to be safely used to supplement drinking water sources. This research was conducted to: (i) determine the concentration of volatile organic compounds (VOCs) in secondary treated effluent (STE) and, post-reverse osmosis (RO) treatment and to; (ii) assess the health risk associated with VOCs for indirect potable reuse (IPR). Samples were examined pre and post-RO in one full-scale and one pilot plant in Perth, Western Australia. Risk quotients (RQ) were estimated by expressing the maximum and median concentration as a function of the health value. Of 61 VOCs analysed over a period of three years, twenty one (21) were detected in STE, with 1,4-dichlorobenzene (94%); tetrachloroethene (88%); carbon disulfide (81%) and; chloromethane (58%) most commonly detected. Median concentrations for these compounds in STE ranged from 0.81 μg/L for 1,4-dichlorobenzene to 0.02 μg/L for carbon disulphide. After RO, twenty six (26) VOCs were detected, of which 1,4-dichlorobenzene (89%); acrylonitrile (83%) chloromethane (63%) and carbon disulfide (40%) were the more frequently detected. RQ(max) were all below health values in the STE and after RO. Median removal efficiency for RO was variable, ranging from −77% (dichlorodifluoromethane) to 91.2% (tetrachloroethene). The results indicate that despite the detection of VOCs in STE and after RO, their human health impact in IPR is negligible due to the low concentrations detected. The results indicate that 1,4-dichlorobenzene is a potential treatment chemical indicator for assessment of VOCs in IPR using RO treatment.  相似文献   

17.
H Kawaguchi  Z Li  Y Masuda  K Sato  H Nakagawa 《Water research》2012,46(17):5566-5574
The in situ oil sands production method called steam-assisted gravity drainage (SAGD) reuses process wastewater following treatment. However, the treatment and reuse processes concentrate contaminants in the process water. To determine the concentration and dynamics of inorganic and organic contaminants, makeup water and process water from six process steps were sampled at a facility employing the SAGD process in Alberta, Canada. In the groundwater used for the makeup water, the total dissolved organic carbon (DOC) content was 4 mg/L. This significantly increased to 508 mg/L in the produced water, followed by a gradual increase with successive steps in subsequent water treatments. The concentrations and dynamics of DOC constituents in the process water determined by gas chromatography-mass spectrometry showed that in the produced water, volatile organic compounds (VOCs) such as acetone (33.1 mg/L) and 2-butanone (13.4 mg/L) predominated, and there were significant amounts of phenolic compounds (total 9.8 mg/L) and organic acids including naphthenic acids (NAs) corresponding to the formula CnH2n+ZOX for combinations of n = 4 to 18, Z = 0 and −2, and X = 2 to 4 (53 mg/L) with trace amounts of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene and phenanthrene. No organic contaminants, except for saturated fatty acids, were detected in the groundwater. The concentration of DOC in the recycled water was 4.4-fold higher than that in the produced water. Likewise, the total concentrations of phenols and organic acids in the recycled water were 1.7- and 4.5-fold higher than in the produced water, whereas the total concentrations of VOCs and PAHs in the recycled water were reduced by over 80%, suggesting that phenols and organic acids are selectively concentrated in the process water treatment. This comprehensive chemical analysis thus identified organic constituents that were concentrated in the process water and which interfere with subsequent water treatments in the SAGD process.  相似文献   

18.
J. Hoign  H. Bader 《Water research》1983,17(2):185-194
Rate constants of reactions of ozone with non-ionized solutes, such as aliphatic alcohols, olefins, chlorosubstituted ethylenes, substituted benzenes and carbohydrates, have been determined from the absolute rates with which ozone reacts in the presence of various concentrations of these compounds in water. They have been tested by comparison with the relative rates by which pairs of these solutes are transformed by ozone. Different experimental methods have been developed to determine such rate constants in the range from 10−2 to 105 M−1 s−1. Interferences between the direct reactions of ozone and reactions due to its preliminary decomposition to secondary oxidants could be eliminated. The kinetics of all the reactions studied are first order with respect to ozone and solute concentration. The rate constants of many types of organic compounds in water are of the same order of magnitude as in organic solvents. Substituted benzenes, however, react in water about 100 times faster. They obey a linear free energy relationship with p = −3.1 when based on δp+ values. Comparisons of rate constants with chemical structures of the reacting groups show that all reactions of ozone are highly selective and electrophilic. The kinetic data allow explanation of the chemical effects of ozone observed in water treatment practice.  相似文献   

19.
A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H2O2, activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca2+ solutions compared to similar concentrations of Na+, while that of anionic compounds is three fold weaker in SO42- solutions compared to equal concentrations of Cl.  相似文献   

20.
Concentrations of dissolved organic carbon (DOC) in surface waters are increasing across Europe and parts of North America. Several mechanisms have been proposed to explain these increases including reductions in acid deposition, change in frequency of winter storms and changes in temperature and precipitation patterns. We used two modelling approaches to identify the mechanisms responsible for changing surface water DOC concentrations. Empirical regression analysis and INCA-C, a process-based model of stream-water DOC, were used to simulate long-term (1986-2003) patterns in stream water DOC concentrations in a small boreal stream. Both modelling approaches successfully simulated seasonal and inter-annual patterns in DOC concentration. In both models, seasonal patterns of DOC concentration were controlled by hydrology and inter-annual patterns were explained by climatic variation. There was a non-linear relationship between warmer summer temperatures and INCA-C predicted DOC. Only the empirical model was able to satisfactorily simulate the observed long-term increase in DOC. The observed long-term trends in DOC are likely to be driven by in-soil processes controlled by SO42− and Cl deposition, and to a lesser extent by temperature-controlled processes. Given the projected changes in climate and deposition, future modelling and experimental research should focus on the possible effects of soil temperature and moisture on organic carbon production, sorption and desorption rates, and chemical controls on organic matter solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号