首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser-matter coupling results specific structural changes in amorphous chalcogenide semiconductor layers which originate from electron-hole excitations, defect creation or modification and subsequent atomic motions. These changes can be influenced by plasmon fields. Plasmon enhanced photo-darkening and bleaching, optical recording in thin AsxSe1 − x films have been demonstrated in this paper, specifically in As20Se80 and As2Se3 compositions which revealed the best effects of stimulated expansion or optical darkening respectively due to the He-Ne laser (λ = 633 nm) illumination. Gold nanoparticles deposited on the silica glass substrate and covered by an amorphous chalcogenide film satisfy the conditions of efficient surface plasmon resonance in this spectral region. These experimental results support the importance of localized electric fields in photo-structural transformations of chalcogenide glasses as well as suggest better approaches for improving the performance of these optical recording media.  相似文献   

2.
Low refractive index silicon oxide films were deposited using atmospheric-pressure He/SiH4/CO2 plasma excited by a 150-MHz very high-frequency power. Significant increase in deposition rate at room temperature could prevent the formation of dense SiO2 network, decreasing refractive index of the resulting film effectively. As a result, a silicon oxide film with the lowest refractive index, n = 1.24 at 632.8 nm, was obtained with a very high deposition rate of 235 nm/s. The reflectance and transmittance spectra showed that the low refractive index film functioned as a quarter-wave anti-reflection coating of a glass substrate.  相似文献   

3.
The transmission spectra were used to obtain an efficient parameterization of the spectral dependences of the optical constants of amorphous As–S thin films by applying a suitable dielectric function model. For studying the compositional dependence of the optical constants, different compositions of AsxS100−x (x = 10, 15, 20, 25, 30 and 40 at%) thin films were deposited by thermal evaporation technique in a base pressure of 7.5 × 10−6 Torr at room temperature. The transmission spectra (measured in the wavelength range of 0.2–0.9 μm) were analyzed by applying O’Leary, Johnson, and Lim (OJL) model based on the joint density of states (JDOS) functions. However, the best fit of the optical data was obtained by considering the two-layer configuration film; the top layer was assumed to be consisted of a bulk AsS material embedded in voids (air). Therefore, OJL model along with Bruggeman effective-medium approximation (BEMA) model was used to determine the effective optical constants of the As–S thin films. The photon energy dependence of the dielectric function, ? = ?r − i?i of the investigated As–S films was presented. The film thickness, absorption coefficient α, refractive index n, extinction coefficient k, static refractive index n(0) and optical band gap Eg have been deduced. It was found that with the increase in arsenic content up to the stoichiometric As40S60, the indirect optical energy gap decreases, while the refractive index increases.  相似文献   

4.
The effects of ion implantation and subsequent annealing on the surface morphology of thin amorphous chalcogenide films of the As-Se system have been studied. Ion implantation of nitrogen (N+) with an energy E=100 keV and high doses (typically D=1.1016 cm−2) has been carried out at room temperature. Subsequent thermal annealing treatments near the melting temperature (Tg∼160°C) have been performed leading to changes in the thin-film morphology, which are dependent on the As content and are best expressed for the As3Se2 films. Optical microscope photographs reveal details of the rippled surface exhibiting quasi-regular domain-like structure. The parameter λ, describing it, is dependent on the film thickness and grows with its increase. Thermal annealing near Tg also influences the diffuse optical reflectivity—it increases considerably while the interference features tend to disappear with the appearance of the rippled film surface structure and the effect is again greater for the thicker films.  相似文献   

5.
Vinh Ai Dao 《Thin solid films》2009,517(14):3971-2413
Laser crystallization of amorphous silicon (a-Si), using a fiber laser of λ = 1064 nm wavelength, was investigated. a-Si films with 50 nm thickness deposited on glass were prepared by a plasma enhanced chemical vapor deposition. The infrared fundamental wave (λ = 1064 nm) is not absorbed by amorphous silicon (a-Si) films. Thus, different types of capping layers (a-CeOx, a-SiNx, and a-SiOx) with a desired refractive index, n and thickness, d were deposited on the a-Si surface. Crystallization was a function of laser energy density, and was performed using a fiber laser. The structural properties of the crystallized films were measured via Raman spectra, a scanning electron microscope (SEM), and an atomic force microscope (AFM). The relationship between film transmittance and crystallinity was discussed. As the laser energy density increased from 10-40 W, crystallinity increased from 0-90%. However, the higher laser density adversely affected surface roughness and uniformity of the grain size. We found that favorable crystallization and uniformity could be accomplished at the lower energy density of 30 W with a-SiOx as the capping layer.  相似文献   

6.
Anatase (TiO2) thin films were grown by non-aqueous sol-gel dip-coating using titanium (IV) n-butoxide as precursor and 1-butanol as solvent. High withdrawal speed of 4.7 mm/s in dip-coating resulted in defect free films of 100 nm average film thickness after subsequent heat treatments. According to scanning electron microscope and X-ray diffraction measurements, the films consisted of nanocrystalline anatase with 30 nm mean crystallite size. Refractive index n(λ) and extinction coefficient k(λ) were determined over the wavelength range from 200 to 1650 nm. The optical band gap of the film material was approximately 3.2 eV. The results showed very similar optical characteristics to those that are accomplished with chemically more reactive aqueous sol-gel processes. Furthermore, it was found that in addition to porosity, coordination number of Ti atoms to nearest oxygen neighbors is likely to have a significant role in explaining differences of optical properties between bulk anatase and thin film materials of the present work.  相似文献   

7.
Ferroelectric Pb0.92La0.08Zr0.4Ti0.6O3 (PLZT) thin films were deposited on SrTiO3-buffered Si(001) substrate by on-axis radio frequency magnetron sputtering. X-ray diffraction analysis revealed epitaxial growth of monocrystalline PLZT films, with an (001) rocking curve full width at half maximum of ∼ 0.3°. φ-scans showed 45° in-plane orientation of the perovskite unit cell relative to that of silicon. The elemental composition of the thin film heterostructure was examined by Auger sputter depth profiling measurements. The recorded profiles suggest that the SrTiO3 buffer layer serves not only as a template for epitaxial growth, but also as a barrier suppressing Pb-Si interdiffusion between the PLZT layer and the Si substrate. The surface roughness of the PLZT layer was measured at ∼ 4 nm for films with ∼ 500 nm thickness. Wavelength dispersions for the refractive index (n) and the extinction coefficient (k) were obtained from spectroscopic ellipsometry measurements, with n ∼ 2.48 at the main communication wavelength λ = 1550 nm and k < 0.001 for λ > 650 nm. Recorded polarization vs. electric field loops for the PLZT epilayer, with a SrRuO3 electrode layer interposed between PLZT and SrTiO3, showed a remnant polarization Pr ≈ 40 µC/cm2 and coercive field Ec ≈ 100 kV/cm. These findings suggest that the sputter-deposited PLZT thin films retain the functional properties critical to ferroelectric and electro-optic device applications, also when integrated on a semiconductor substrate.  相似文献   

8.
《Vacuum》1999,52(1-2):115-120
Films prepared by reactive magnetron sputtering always present some structural and morphological heterogeneities.In this work, optical parameters, n(λ), k(λ) and E0, of TiO2 thin films were obtained, using only optical transmittance measurements. Films were described according to Abèles's model. Using a mono-oscillator type dispersion curve for the refractive index and a Lorentzian type curve for the absorption coefficient, we were able to demonstrate that the films were optically equivalent to a porous layer, with some dispersion in film thickness.The detailed analysis of the experimental transmittance data, fitted between 330 nm to 2200 nm, also enabled us to correlate the effective refractive index of each film with its deposition conditions.  相似文献   

9.
Tin-doped indium oxide (ITO) thin films were fabricated by the sol-gel spin-coating method with different indium precursor solutions synthesized from In(NO3)3 or InCl3 (denoted as N-ITO and Cl-ITO, respectively). For both N-ITO and Cl-ITO thin films, the increase of mobility/conductivity and the reduction of carrier concentration with increasing annealing temperatures from 400 to 700 °C are related to the increase of crystallization/densification and the annihilation of oxygen vacancies. The refractive index (1.84 at λ = 550 nm), packing density (0.83), conductivity [(234 (Ω-cm)− 1], and optical band gap (3.95 eV) of N-ITO thin films are higher than that of Cl-ITO thin films, which can be attributed to the higher densification, lower crystallinity, and more free charge carriers of N-ITO thin films. These properties make the indium nitrate-derived ITO thin films have better potential applications for some commercial products.  相似文献   

10.
Thin films of Ta2O5, Nb2O5, and HfO2 were deposited by reactive-low-voltage-ion-plating (RLVIP) on unheated glass and silicon substrates. The film thickness was about 200 nm. Optical properties as well as mechanical film stress of these layers were investigated in dependence of various deposition parameters, i.e. arc current and oxygen partial pressure. For an arc current in the range between 40 and 50 A and an oxygen partial pressure of at least 11 · 10− 4 mbar good results were obtained. The refractive index and film thickness were calculated from spectrophotometric transmission data using the Swanepoel theory. For example at 550 nm wavelength the refractive index for thin RLVIP-Nb2O5-films was found to be n550 = 2.40. The optical absorption was obtained by photo-thermal deflection spectrometry. For the investigated materials absorption coefficients in the range of k = 5 · 10− 4 at 515 nm wavelength were measured. The mechanical film stress was determined by measuring the difference in bending of silicon substrates before and after the deposition process. For dense films, i.e. no water vapour sorption on atmosphere, the mechanical film stress was always compressive with values of some hundred MPa. In case of films deposited with higher arc currents (Iarc > 60A) and lower oxygen pressure (< 15 · 10− 4 mbar) the influence of a post deposition heat treatment at 350 °C for 4 h on air was also investigated. For these films the properties could clearly be improved by such treatment. However, by using lower arc currents and higher oxygen partial pressure during the ion plating process, immediately dense and environmental stable films with good optical as well as mechanical properties could be achieved without post deposition heat treatment. All the results obtained will be presented in graphs and diagrams.  相似文献   

11.
The third-order optical nonlinearities of 80GeS2·(20 − x)Ga2S3·xY2S3 (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigated utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n2 in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n2 and low nonlinear absorption coefficient β, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.  相似文献   

12.
Surface relief gratings produced on a surface of amorphous chalcogenide films As20Se80 are flatten at room temperature under illumination by a near-bandgap polarized light (λ = 650 nm). The rates of the profiles flattening are dependent on the light intensity, polarization direction, and grating period. Two possible flattening mechanisms are selected: viscous flow and volume diffusion, and the flattening rates are calculated for both of them. From the comparison of the theory with the experiments, it is concluded that the process is controlled by anisotropic volume diffusion. The effective photo-induced diffusion coefficients, Dxx, along E-vector of the light polarization, obtained from the flattening kinetics are proportional to the light intensity (Dxx = βxI) with βx = 2.5 × 10− 18 m4/J. The diffusion coefficients Dyy along perpendicular direction are four times smaller, independently of the light intensity.  相似文献   

13.
Ce, Sm, Dy, Er and Yb doped PbTiO3 thin films were deposited by sol-gel method on (111)Pt/Ti/SiO2/Si substrates. The optical properties of the films were characterized by means of ellipsometry using a HeNe-laser source (λ=632.8 nm). Real (n) and imaginary (k) parts of the refractive index were obtained applying the Fresnel equation. It is shown that for lead titanate thin films doped with 2 mol.% of lanthanide (Ln) ions the real part of the refractive index decreases smoothly with increasing atomic number of the element, with the exception of the Ce doped film. The experimental results are explained taking into account the electronic structure of the dopants. Specific results of Ce are explained by its oxidation state, which has been shown by means of X-ray photoelectron spectroscopy to be +4. Additionally, noticeable correlation of the optical properties of the films with respect to doping level was observed.  相似文献   

14.
The paper presents investigations of the optical properties of thin high-refractive-index silicon nitride (SiNx) and diamond-like carbon (DLC) films deposited by the radio-frequency plasma-enhanced chemical vapor deposition method for applications in tuning the functional properties of optical devices working in the infrared spectral range, e.g., optical sensors, filters or resonators. The deposition technique offers the ability to control the film's optical properties and thickness on the nanometer scale. We obtained thin, high-refractive-index films of both types at deposition temperatures below 350 °C, which is acceptable under the thermal budget of most optical devices. In the case of SiNx films, it was found that for short deposition processes (up to 5 min long) the refractive index of the film increases in parallel with its thickness (up to 50 nm), while for longer processes the refractive index becomes almost constant. For DLC films, the effect of refractive index increase was observed up to 220 nm in film thickness.  相似文献   

15.
Single phase Bi1.95La1.05TiNbO9 (LBTN-1.05) thin films with a layered aurivillius structure have been fabricated on fused silica substrates by pulsed laser deposition at 700 °C. The X-ray diffraction pattern revealed that the films are single-phase aurivillius. The band gap, linear refractive index and linear absorption coefficient were obtained by optical transmittance measurements. The film exhibits a high transmittance (> 70%) in visible-infrared region and the dispersion relation of the refractive index vs. wavelength follows the single electronic oscillator model. The nonlinear optical absorption property of the film was determined by the single beam Z-scan method using 800 nm with a duration of 100 fs. A large positive nonlinear absorption coefficient β = 5.95 × 10− 8 m/W was determined experimentally. The results showed that the LBTN-1.05 is a promising material for applications in absorbing-type optical devices.  相似文献   

16.
Mesophase silica thin film doped with in-situ formed binary terbium (Tb) complex was synthesized through a simple one-step evaporation-induced self-assembly method. In this process, the precursors of rare earth complex and surfactant were added into hydrolyzed tetramethoxy-silane (TMOS) together and the inorganic/organic mesophase thin film was formed after spin coating. The mesophase structure was characterized as a 2D-hexagonal structure by X-ray diffraction (XRD) analysis. The excitation spectra (λem = 544 nm) and emission spectra (λex = 315 nm) indicated that the binary complex, Tb(SA)3, formed in-situ during the formation of the film. Under the UV excitation, the mesophase silica thin film showed bright and consistent green luminescence. The luminescence quantum efficiency of the hybrid thin film was confirmed to be 35.2%.  相似文献   

17.
Influence of both calcination ambient and film thickness on the optical and structural properties of sol-gel derived TiO2 thin films have been studied. X-ray diffraction results show that prepared films are in an anatase form of TiO2. Films calcined in argon or in low vacuum (∼2 × 10−1 mbar) are found to be smaller in crystallite size, more transparent at low wavelength region of ∼300-450 nm, denser, have higher refractive index and band gap energy compared to air-calcined films. Scanning electron microscopic study reveals that surfaces of TiO2 films calcined in argon or in low vacuum are formed by densely packed nano-sized particulates. Presence of voids and signs of agglomeration can be seen clearly in the surface microstructure of air-calcined films. In the thickness range ∼200-300 nm, band gap energy and crystallite size of TiO2 films remain practically unaffected with film thickness but refractive index of thinner film is found to be marginally higher than that of thicker film. In this work, it has been shown that apart from temperature and soaking time, partial pressure of oxygen of the ambient is also an important parameter by which crystallite size, microstructure and optical properties of the TiO2 films may be tailored during calcination period.  相似文献   

18.
The optical properties of Bi2V1−xMnxO5.5−x {x = 0.05, 0.1, 0.15 and 0.2 at.%} thin films fabricated by pulsed laser deposition on platinized silicon substrates were studied in UV-visible spectral region (1.51-4.17 eV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Ψ and Δ) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder.  相似文献   

19.
The optical constants of the Ge25Sb15−xBixS60 (0?x?15) chalcogenide films, either as-deposited or after being annealed at various temperatures have been computed in the spectral wavelength range 400-2400 nm from the transmittance and reflectance measurements of normally-incident light. With the increase in bismuth content, the optical energy gap (which is indirect) decreases, while the refractive index increases. The effects of film thickness, substrate type, deposition rate and γ-radiation on optical properties have been studied. The effect of thermal annealing on the growth characteristics and stability of the films has been studied using X-ray diffraction and scanning electron microscopy. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model.  相似文献   

20.
Different compositions of Se100−x(SbSn)x (0 ≤ x ≤ 14 at.%) glasses were prepared by the well-known melt quench technique. Thin films of these glasses were prepared by thermal evaporation onto ultrasonic cleaned glass substrate. Transmittance spectra of these films were measured in the wavelength range 400–2500 nm by using Jasco double beam spectrophotometer. A straight forward analysis proposed by Swanepoel, based on the maxima and minima of the transmittance spectra, allows to accurate determination of the film thickness and the complex index of refraction. Increasing SbSn content at the expense of Se atoms is found to affect the refractive index and the extinction coefficient of these films. The refractive indexes were discussed in terms of the single-oscillator Wemple–DiDomenico model. The compositional dependence of the optical band gap for the Se100−x(SbSn)x (0 ≤ x ≤ 14 at.%) thin films is discussed in terms of the chemical-bond approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号