共查询到20条相似文献,搜索用时 15 毫秒
1.
Dominik M. Berg Rabie DjemourLevent Gütay Guillaume ZoppiSusanne Siebentritt Phillip J. Dale 《Thin solid films》2012,520(19):6291-6294
Alongside with Cu2ZnSnS4 and SnS, the p-type semiconductor Cu2SnS3 also consists of only Earth abundant and low-cost elements and shows comparable opto-electronic properties, with respect to Cu2ZnSnS4 and SnS, making it a promising candidate for photovoltaic applications of the future. In this work, the ternary compound has been produced via the annealing of an electrodeposited precursor in a sulfur and tin sulfide environment. The obtained absorber layer has been structurally investigated by X-ray diffraction and results indicate the crystal structure to be monoclinic. Its optical properties have been measured via photoluminescence, where an asymmetric peak at 0.95 eV has been found. The evaluation of the photoluminescence spectrum indicates a band gap of 0.93 eV which agrees well with the results from the external quantum efficiency. Furthermore, this semiconductor layer has been processed into a photovoltaic device with a power conversion efficiency of 0.54%, a short circuit current of 17.1 mA/cm2, an open circuit voltage of 104 mV hampered by a small shunt resistance, a fill factor of 30.4%, and a maximal external quantum efficiency of just less than 60%. In addition, the potential of this Cu2SnS3 absorber layer for photovoltaic applications is discussed. 相似文献
2.
较差的光催化产氢效率极大地阻碍了TiO2光催化剂的工业化应用。为此,本文在含有NH4VO3的磷酸盐溶液中,采用等离子体电解氧化(PEO)法制备了多孔TiO2/V2O5复合膜光催化剂,通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)、X射线光电子谱(XPS)和紫外可见漫反射光谱(UV-Vis DRS)对其组成、结构及光吸收性质进行了表征,并采用气相色谱评价了薄膜催化剂的光催化产氢性能,研究了电解液中NH4VO3含量对膜的结构、组成和光催化产氢性能的影响。结果表明:复合膜催化剂主要由锐钛矿和金红石型TiO2组成,具有微孔结构,V2O5主要以无定形形式存在于膜中,与TiO2有很强的相互作用,影响TiO2的晶面间距。研究发现,元素V抑制了TiO2的结晶和金红石型TiO2的形成,扩大了薄膜的光学吸收范围。针对Na2S+ Na2SO3溶液中的光催化产氢性能的研究显示,在质量浓度为1 g/L NH4VO3的电解液中制备的TiO2/V2O5薄膜的光催化活性最高,优于近年来报道的其他光催化剂。光催化重复实验表明,该复合膜催化剂具有较高的稳定性和较为恒定的光催化活性。 相似文献
3.
A novel In2S3/TiO2 composite with visible-light photocatalytic activity was prepared by a chemical precipitation method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope and UV–vis diffuse reflectance spectroscopy. Under both UV- and visible-light irradiation, the In2S3/TiO2 composite shows good photocatalytic activity to degrade methyl orange, ascribed to the absorption of visible light by In2S3 sensitizer and enhanced separation of photoinduced electron–hole pairs in the composite semiconductors. 相似文献
4.
Cu2SnSe3 thin films were prepared by single-step D.C. sputtering at 100-400 °C for 3 h using targets composed of Cu2Se and SnSe2 in three different ratios of 2/1 (target A), 1.8/1 (target B), and 1.6/1 (target C). The advantages of self-synthesized SnSe2 instead of commercially available SnSe for depositing Cu2SnSe3 thin films were demonstrated. Effects of target composition and substrate temperature on the properties of Cu2SnSe3 thin films were investigated. Structure, surface morphology, composition, electrical and optical properties at different process conditions were measured. The 400 °C-sputtered films obtained from target B display with direct band gap of 0.76 eV, electrical resistivity of 0.12 Ω cm, absorption coefficient of 104-105 cm− 1, carrier concentration of ∼ 1.8 × 1019 cm− 3, and electrical mobility of 2.9 cm2/V s. 相似文献
5.
Investigation on solar photocatalytic activity of TiO2 loaded composite: TiO2/Eggshell, TiO2/Clamshell and TiO2/CaCO3 总被引:1,自引:0,他引:1
The TiO2/Eggshell, TiO2/Clamshell and TiO2/CaCO3 loaded composites were prepared by sol-gel method and characterized by XRD and SEM. Their photocatalytic activities were measured through the degradation of Acid Red B under solar light irradiation. The influences of TiO2 loaded content, heat-treated temperature and time on the photocatalytic activities were reviewed. The effects of irradiation time and dye initial concentration on the photocatalytic degradation were also investigated. The results showed that the photocatalytic activity can be greatly enhanced by appropriate TiO2 loaded content. 相似文献
6.
本文以固定n(Sr)/n(Ti)摩尔比0.4的SrTiO_3/TiO_2(金红石相)异质结纳米颗粒,通过"光催化还原沉积方法"制备不同质量分数的纳米铂颗粒(0、1%、2%、5%),探究其催化活性的变化,采用XRD、SEM、UV-vis、XPS方法对其进行表征,并做了相关光催化分解水产氢性能测试.结果表明:负载贵金属Pt纳米颗粒量越大,对应的Pt晶粒平均尺寸为40.8 nm,1%Pt纳米颗粒SrTiO_3/TiO_2异质结构的BET比表面积在23.195 m~2/g处最高,并且介孔材料的特征是平均Barrett-Joyner-Halenda(BJH)孔径为13.60 nm,总孔体积为0.079 cm~3/g;高BET表面积和大的总孔体积强烈地支持SrTiO_3/TiO_2具有介孔结构的事实;相应的催化剂催化活性越高,其中负载5%Pt纳米颗粒的SrTiO_3/TiO_2纳米颗粒光催化8 h产氢量为3.574 mmol,平均产氢效率为0.447 mmol/(gcat·h),但从性价比的角度来考虑,其催化效率远不及负载1%Pt纳米颗粒的SrTiO_3/TiO_2纳米颗粒催化效率的5倍,因此负载5%Pt的SrTiO_3/TiO_2纳米颗粒光催化效率最高. 相似文献
7.
Improved efficiency of hybrid Al/Ca/P3HT:CISe:TiO2/PEDOT:PSS/ITO thin film solar cells was obtained by optimizing P3HT/CISe ratio. This study also investigated the effects of TiO2 content in the P3HT:CISe active layer, and altering annealing temperature conditions. The optimum TiO2 content and annealing temperature for solar cell efficiency is 25 wt.% and 150 °C, respectively. The optimal results for the open circuit voltages (VOC), short-circuit current density (JSC), fill factor (FF), and efficiency (η) of the prepared hybrid thin film solar cell were VOC = 0.335 V, JSC = 8.07 mA/cm2, FF = 52.75, and η = 1.425. 相似文献
8.
TiO_2纳米粉体应用于光催化领域存在光吸收仅局限于紫外光区域、难以回收等缺点,因此,纳米TiO_2固定化和可见光改性成为光催化领域的两个研究热点.本文采用绿色环保的水热法,将TiO_2负载于玄武岩纤维载体上,在较低的温度下制备出一种新型的玄武岩纤维/TiO_2复合材料.使用XRD分析了复合材料的物相结构,采用SEM观测了复合材料的形貌,并对水热法合成其机理进行了分析.结果表明:150℃水热条件下、反应10 h合成的玄武岩纤维/TiO_2复合材料中,颗粒状的TiO_2涂层均匀包覆于玄武岩纤维表面,并没有改变玄武岩纤维结构,形成了一种具有核壳结构的新型玄武岩纤维/TiO_2复合材料,经过TiO_2修饰的玄武岩纤维对可见光有很好吸收.因此,玄武岩纤维/TiO_2复合材料是一种具有潜在应用价值的可见光催化材料. 相似文献
9.
The spectrophotometric change of a mercury (II) (Hg2+) selective small molecule chemosensor has been successfully converted into a photovoltaic response upon ligating Hg2+. The photon excitation was followed by charge separation facilitated by TiO2 and polyaniline (PANI), resulting in an electron transfer to an electrical back contact. The photoresponse of the Hg2+ selective chromophore was converted to an electron current equivalent to the amount of Hg2+ in solution. The favourable properties of a Hg2+ sensitive chemosensor was combined with the semiconductor capabilities of TiO2 to construct a sensor that is capable of generating a current in the presence of Hg2+ under illumination. A composite of the fluorescent chemosensor rhodamine 6G hydrozone derivative (RS) and PANI was immobilized on indium tin oxide (ITO) plates coated with TiO2 and subjected to photovoltammetric measurements. The photovoltammetric responses of the coated layers were investigated to determine the sensitivity and selectivity of the immobilized sensor to Hg2+ in the presence of background ions. The photo-response increased linearly with increasing Hg2+ concentration from 10 to 200 μg L−1 with a limit of quantification (LOQ) of 4 μg L−1. The pH independence for the photoresponse was limited by the TiO2 layer and was optimal between pH 6 and 7. 相似文献
10.
采用超声辅助溶胶凝胶法制备了LaFeO3颗粒,进一步以碳纳米管(CNTs)为基底和钛酸丁酯为前体,通过一步水热法煅烧合成CNTs/TiO2/LaFeO3(CTF)三元异质结光催化复合材料。通过扫描电子显微镜(SEM)、X射线衍射分析(XRD)、氮气吸附-解吸等温线(BET)、紫外-可见分光光度计(UV-Vis)、光致发光光谱(PL)等表征手段对材料的形貌与特征结构、比表面积和孔径结构以及光学特征进行了分析,并在紫外光下通过降解活性黑五(RB5)测试样品的光催化性能。结果表明,以CNTs作为载体,能够有效提升LaFeO3/TiO2复合材料的光催化性能。当CNTs在复合材料中的质量占比为5%时,150 W汞灯照射下RB5的50 min去除率可达99.5%。CNTs一方面通过增加复合材料的比较面积为催化反应的进行提供了更多的活性位点,更为重要的是,CNTs作为光生载流子传输的通道加快了电荷分离效率,提升了复合材料的降解能力和催化反应动力学进程。 相似文献
11.
Nanoporous titanium dioxide (TiO2) based conductometric sensors have been fabricated and their sensitivity to hydrogen (H2) gas has been investigated. A filtered cathodic vacuum arc (FCVA) system was used to deposit ultra-smooth Ti thin films on a transducer having patterned inter-digital gold electrodes (IDTs). Nanoporous TiO2 films were obtained by anodization of the titanium (Ti) thin films using a neutral 0.5% (wt) NH4F in ethylene glycol solution at 5 V for 1 h. After anodization, the films were annealed at 600 °C for 8 h to convert the remaining Ti into TiO2. The scanning electron microscopy (SEM) images revealed that the average diameters of the nanopores are in the range of 20 to 25 nm. The sensor was exposed to different concentrations of H2 in synthetic air at operating temperatures between 100 °C and 300 °C. The sensor responded with a highest sensitivity of 1.24 to 1% of H2 gas at 225 °C. 相似文献
12.
In the present work we report the results of the growth, morphological and structural characterization of Cu2ZnSnS4 (CZTS) thin films prepared by sulfurization of DC magnetron sputtered Cu/Zn/Sn precursor layers. The adjustment of the thicknesses and the properties of the precursors were used to control the final composition of the films. Its properties were studied by SEM/EDS, XRD and Raman scattering. The influence of the sulfurization temperature on the morphology, composition and structure of the films has been studied. With the presented method we have been able to prepare CZTS thin films with the kesterite structure. 相似文献
13.
In this investigation, high transparent nanostructured TiO2 thin film has been prepared by a dip-coating method. The prepared sol was obtained through the hydrolysis of titanium isopropoxide under the selected pH. The transmission of film as an optical parameter was characterized by spectrophotometer. With respect to other experimental results, a high transmission spectrum without any fluctuation in visible wavelength region has been recorded. According to transmission spectrum of film the refractive index and extinction coefficient has been determined. Experimental result has shown that the prepared film has high transmission and good optical parameters. SEM and AFM have been applied for morphology characterization of the film surface. 相似文献
14.
Hideaki Araki Aya Mikaduki Yuki Kubo Tatsuhiro Sato Kazuo Jimbo Win Shwe Maw Hironori Katagiri Makoto Yamazaki Koichiro Oishi Akiko Takeuchi 《Thin solid films》2008,517(4):1457-1460
Stacked precursors of Cu, Sn, and Zn were fabricated on glass/Mo substrates by electron beam evaporation. Six kinds of precursors with different stacking sequences were prepared by sequential evaporation of Cu, Sn, and Zn with substrate heating. The precursors were sulfurized at temperatures of 560 °C for 2 h in an atmosphere of N2 + sulfur vapor to fabricate Cu2ZnSnS4 (CZTS) thin films for solar cells. The sulfurized films exhibited X-ray diffraction peaks attributable to CZTS. Solar cells using CZTS thin films prepared from six kinds of precursors were fabricated. As a result, the solar cell using a CZTS thin film produced by sulfurization of the Mo/Zn/Cu/Sn precursor exhibited an open-circuit voltage of 478 mV, a short-circuit current of 9.78 mA/cm2, a fill factor of 0.38, and a conversion efficiency of 1.79%. 相似文献
15.
以SbCl3和Se粉为原料,水合肼(N2H4·H2O)为还原剂,采用水热法在150℃下,分别保温不同的时间合成Sb2Se3纳米粉末.通过X射线衍射(XRD)、场发射电子扫描电镜(FESEM)、透射电镜(TEM)以及高分辨透射电镜(HRTEM)等分析方法对产物的物相成分和微观形貌等进行了表征,实验结果表明保温时间达到24h时,获得产物为单相Sb2Se3纳米线晶体.根据实验结果还研究了水热合成Sb2Se3纳米线晶体可能的反应及生长机理,结果表明一维纳米线沿[001]方向生长,纳米线的形成与其独特的层状晶体结构有关.最后采用放电等离子体快速热压烧结法将水热合成的Bi2Te3纳米粉末与不同含量Sb2Se3纳米线进行复合,分析了Sb2Se3纳米线对Bi2Te3纳米材料热电性能的影响,发现复合约1at%Sb2Se3纳米线可以使Bi2Te3纳米材料热电性能有一定提高. 相似文献
16.
Cu2O films were electrodeposited on stainless steel substrates followed by Ar annealing for photoelectrochemical hydrogen generation. Plating variables including time and pH for the plating bath were explored to obtain desirable film qualities. X-ray diffraction (XRD) patterns indicated that the as-deposited Cu2O films exhibited preferred orientations in (200) and (111) planes from the plating bath of pH 9 and pH 11, respectively. Images from scanning electron microscope (SEM) revealed pyramid-like grains in 1 µm size for the Cu2O films from pH 9 plating bath and large plate-like grains in 3-8 µm size from pH 11 plating bath. Identical results from SEM and XRD were obtained from the Cu2O films at longer plating time. After annealing at 350 °C for 30 and 60 min, the Cu2O phase was nicely maintained but SEM images demonstrated coarser grains. Photoelectrochemical activity for H2 generation was obtained on the Cu2O films before and after annealing by recording relevant photoelectrochemical currents at − 0.3 V in 0.5 M aqueous Na2SO4 solution. For the Cu2O films from both baths, substantial increments in photoelectrochemical current were observed for the annealed samples as opposed to as-deposited ones. The largest photoelectrochemical current was obtained at 0.143 mA/cm2 from the Cu2O film of pH 9 plating bath with 60 min annealing, which exhibited a 560% increase over the as-deposited sample. We attributed the enhanced photoelectrochemical current to the improved crystallinity and reduced defects for the annealed Cu2O films. 相似文献
17.
Anatase TiO2 films were fabricated on SnO2:F substrates in an aqueous solution. The films were constructed of assemblies of nano-TiO2. Surface of the films showed large roughness due to nano/micro-asperity of the assemblies. The thickness was increased to 260 nm, 360 nm, 600 nm and 760 nm with the deposition time of 2 h, 5 h, 25 h and 48 h, respectively. The films showed strong intensity of 004 X-ray diffraction possibly because the needles, i.e., nano-TiO2, elongated along the c-axis. Low-temperature synthesis of crystalline anatase TiO2 films has a great deal of potential in the development of electronic devices, optical devices, dye-sensitized solar cells, photocatalytic devices and biomolecule sensors. 相似文献
18.
Bi2Se3 nanobelts, nanoflakes and sheets embedded nanotubes were prepared via solvothermal process with different solvents. The reaction conditions influencing the synthesis of Bi2Se3 nanostructures such as solvents, and reaction temperatures were studied and optimized. Results indicated that the mixed solvent composed of triethanolamine and ethanol (TEA-EtOH) or triethanolamine and distilled water (TEA-H2O) can decrease the threshold temperature (TT) of Bi2Se3. With the solvents TEA-EtOH and TEA-H2O, we originally accomplished the shape-controlled synthesis of Bi2Se3 nanocrystals by controlling reaction temperature. Based on the viewpoint of crystallography about Bi2Se3, the possible growth mechanisms of Bi2Se3 nanostructures were discussed. 相似文献
19.
MgFe2O4/TiO2 (MFO/TiO2) composite photocatalysts were successfully synthesized using a mixing-annealing method. The synthesized composites exhibited significantly higher photocatalytic activity than a naked semiconductor in the photodegradation of Rhodamine B. Under UV and visible light irradiation, the optimal percentages of doped MgFe2O4 (MFO) were 2 wt.% and 3 wt.%, respectively. The effects of calcination temperature on photocatalytic activity were also investigated. The origin of the high level of activity was discussed based on the results of X-ray diffraction, UV-vis diffuse reflection spectroscopy, scanning electron microscopy, transmission electron microscopy, and nitrogen physical adsorption. The enhanced activity of the catalysts was mainly attributed to the synergetic effect between the two semiconductors, the band potential of which matched suitably. 相似文献
20.
R. Alexandrescu I. Morjan R. Birjega I. Soare I. Voicu F. Dumitrache E. Vasile 《Thin solid films》2007,515(24):8438-8445
Undoped and Fe-doped TiO2 nanopowders with Fe/Ti (atomic ratio) precursor concentration ranging from 7% up to 25% have been prepared by the IR laser pyrolysis technique. A sensitized mixture of TiCl4 and Fe (CO)5 was used as titanium and iron precursor, respectively. Reference undoped titania samples with a major concentration of anatase phase (about 90%) were obtained by the same technique by using very high flows of the oxidizing agent (air). The effects of the iron-dopant concentration on the essential structural properties of the resultant powders such as the phase formation, the crystallinity, the average particle size and distributions were systematically investigated by X-ray diffraction, Raman spectroscopy and transmission electron microscopy. The decrease of the TiO2-anatase crystalline phase, the simultaneous increase of the amorphous phase and the decrease in size of particle mean diameter appear as main effects induced by the Fe-dopant concentration. 相似文献