首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well-aligned carbon nanotubes (CNTs) were grown on iron coated silicon substrates by microwave plasma enhanced chemical vapor deposition. Effect of plasma composition on the growth and microstructures of CNTs were investigated by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and optical emission spectroscopy. Morphology and microstructure of nanotubes were found to be strongly dependent on the plasma composition. Aligned bamboo-shaped nanotubes consisting of regular cone shaped compartments were observed for C2H2/NH3/N2 and C2H2/NH3/H2 gas mixtures. Randomly oriented or no nanotubes growth were observed in C2H2/H2 and C2H2/N2 gas mixtures respectively. CNTs grown in nitrogen rich plasma had more frequent short compartments while compartment length increased with decreasing nitrogen concentration in the plasma. Raman spectroscopy of CNTs samples revealed that CNTs prepared in nitrogen rich plasma had higher degree of disorder than those in low nitrogen or nitrogen free plasma. In-situ optical emission spectroscopy investigations showed that CN and H radicals play very important role in both the growth and microstructure of CNTs. Microstructure of CNTs has been correlated as a function of CN radical concentration in the plasma. It is suggested that presence of nitrogen in the plasma enhances the bulk diffusion of carbon through the iron catalyst particles which causes compartment formation. Based on our experimental observations, growth model of nanotubes under different plasma composition has been suggested using base growth mechanism.  相似文献   

2.
Orientation of sp2-bonded boron carbonitride (BCN) hybrid films has been investigated. The films were synthesized on Ni (111) and polycrystalline Ti substrates by radio frequency plasma enhanced chemical vapor deposition using tris-dimethylamino borane as a single-source molecular precursor. The deposition was performed at the radiofrequency power 400-800 W at the working pressure 2.6 Pa. Formation of sp2-BCN hybrids in the samples was confirmed by X-ray diffraction (XRD). In the XRD profile, the peak at 26.3° revealed formation of crystalline phase in the samples in which the lattice planes are separated from each other by around 3.5 Å. The D band at ~ 1350 cm− 1 and the G band at ~ 1570 cm− 1 in Raman spectra also suggested presence of graphite-like sp2-B-C-N hybrid bonds. The films were composed of different B-N, B-C, and C-N bonds to form sp2-BCN atomic hybrids confirmed by X-ray photoelectron spectra. Orientation and local structures of the films were studied by near-edge X-ray absorption fine structure (NEXAFS) measurements. The dominant presence of π* and σ* resonance peaks of the sp2 hybrid orbitals in B K-edge NEXAFS spectra revealed preferred formation of sp2-BCN atomic hybrids around B atoms like-BN3 configuration in respect to the plane of Ni (111) substrate. Different orientations were suggested on the basis of polarization dependence of B K-edge and N K-edge of the NEXAFS spectra.  相似文献   

3.
This paper reports the findings of a study of the structural, mechanical, and tribological properties of amorphous hydrogenated carbon (a-C:H) coatings for industrial applications. These thin films have proven quite advantageous in many tribological applications, but for others, thicker films are required. In this study, in order to overcome the high residual stress and low adherence of a-C:H films on metal substrates, a thin amorphous silicon interlayer was deposited as an interface. Amorphous silicon and a-C:H films were grown by using a radio frequency plasma enhanced chemical vapor deposition system at 13.56 MHz in silane and methane atmospheres, respectively. The X-ray photoelectron spectroscopy technique was employed to analyze the chemical bonding within the interfaces. The chemical composition and atomic density of the a-C:H films were determined by ion beam analysis. The film microstructure was studied by means of Raman scattering spectroscopy. The total stress was determined through the measurement of the substrate curvature, using a profilometer, while micro-indentation experiments helped determine the films' hardness. The friction coefficient and critical load were evaluated by using a tribometer. The results showed that the use of the amorphous silicon interlayer improved the a-C:H film deposition onto metal substrates, producing good adhesion, low compressive stress, and a high degree of hardness. SiC was observed in the interface between the amorphous silicon and a-C:H films. The composition, the microstructure, the mechanical and tribological properties of the films were strongly dependent on the self-bias voltages. The tests confirmed the importance of the intensity of ion bombardment during film growth on the mechanical and tribological properties of the films.  相似文献   

4.
Plasma enhanced chemical vapor deposition using a non-thermal plasma jet was applied to deposition of ZnO films. Using vaporized bis(octane-2,4-dionato)zinc flow crossed by the plasma jet, the deposition rate was as high as several tens of nm/s. From the results of infrared spectra, the films deposited at the substrate temperature Tsub = 100 °C contained a significant amount of carbon residue, while the films prepared at Tsub = 250 °C showed less carbon fraction. The experimental results confirmed that the plasma jet decomposed bis(octane-2,4-dionato)zinc in the gaseous phase and on the substrate, and that there should be the critical Tsub to form high-quality ZnO films in the range from 100 to 250 °C.  相似文献   

5.
At elevated pressure, stoichiometric and high quality Al2O3 thin films are fabricated at 65-105 °C. By using pre-organised single source precursor aluminium(III) diisopropylcarbamate, Al2O3 were deposited on the surface of a Si substrate in a single step in the liquid phase. Comprehensive removal of large carbamate ligands by proposed β-elimination during decomposition of precursor led to an effective delivery of enshrouded Al-O fragments. Scanning electron microscopy revealed dense and grainy surface morphology. The thicknesses of the films were measured to be 150-300 nm and independent to reaction temperatures or reaction times. Through the use of near edge X-ray absorption fine structure spectroscopy, Al absorption peaks suggest a short range crystalline formation in a film deposited at 105 °C.  相似文献   

6.
A new type of large area metal organic chemical vapor deposition (MOCVD) system for the growth of high quality and large size ZnO materials is introduced. Materials properties of the un-doped, n- and p-doped ZnO epi-films grown on sapphire substrates by this MOCVD system are studied by various techniques, including high resolution X-ray diffraction (XRD), UV-Visible optical transmission (OT), photoluminescence (PL) and photoluminescence excitation (PLE), synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS). The wurtzite (w) ZnO crystal structures grown with primary (0002) orientation were identified. Results have shown the high crystalline quality of MOCVD-grown ZnO films, indicated by the narrow XRD, PL and Raman line widths, strong PL signals, sharp OT edge and smooth surface. In particular, high p-type carrier concentration of > 1017 cm− 3 have been achieved besides the good n-type doping in ZnO.  相似文献   

7.
SiO2/TiO2 optical thin films with variable compositions have been prepared by ion beam induced and plasma enhanced chemical vapour deposition (IBICVD and PECVD). While the films obtained by IBICVD were very compact, the PECVD ones with a high content of Ti presented a columnar microstructure. The formation of Si–O–Ti bonds and a change in the environment around titanium from four- to six-coordinated has been proved by vibrational and X-ray absorption spectroscopies. The refractive index increased with the titanium content from 1.45 to 2.46 or 2.09 for, respectively, the IBICVD and PECVD films. Meanwhile, the band gap decreased, first sharply and then more smoothly up to the value of pure TiO2. It is concluded that the optical properties of SiO2/TiO2 thin films can be properly tailored by using these two procedures.  相似文献   

8.
Nitrogen-doped carbon nanotube (CNT) films have been synthesized by simple microwave plasma enhanced chemical vapor deposition technique. The morphology and structures were investigated by scanning electron microscopy and high resolution transmission electron microscopy. Morphology of the films was found to be greatly affected by the nature of the substrates. Vertically aligned CNTs were observed on mirror polished Si substrates. On the other hand, randomly oriented flower like morphology of CNTs was found on mechanically polished ones. All the CNTs were found to have bamboo structure with very sharp tips. These films showed very good field emission characteristics with threshold field in the range of 2.65-3.55 V/μm. CNT film with flower like morphology showed lower threshold field as compared to vertically aligned structures. Open graphite edges on the side surface of the bamboo-shaped CNT are suggested to enhance the field emission characteristics which may act as additional emission sites.  相似文献   

9.
Nitrogen-doped titanium dioxide (TiO2) thin films were grown on (001) SiO2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τFWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO2. The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed.  相似文献   

10.
The deposition of in situ boron doped silicon films from boron trichloride BCl3 and silane SiH4 in a conventional low-pressure chemical vapour deposition reactor has been studied for high boron doping levels and two kinds of substrates (SiO2 and Si3N4). On the basis of transmission electron microscopy and X-ray photoelectron spectroscopy results, these films appear to be highly sensitive to the local electronic environment of both substrate and deposited atoms. Indeed, beyond a critical doping level, this material becomes more and more amorphous, due to the occurrence of a particular organization of boron atoms in the silicon matrix. This behaviour results in a lowering of the well-known boron enhancement effect for deposition rate and crystalline fraction.  相似文献   

11.
Diamond-like carbon (DLC) films were synthesized by RF plasma enhanced chemical vapor deposition using acetylene as the carbon source and the effects of acetylene/nitrogen ratio in the reaction atmosphere, deposition pressure, and plasma post-treatment using different atmospheres on the surface roughness and mechanical properties of DLC films were investigated. Although the surface roughness, characterized by AFM, decreased as the acetylene/nitrogen ratio in the reaction atmosphere decreased, the hardness of DLC films measured by nanoindentation also decreased with the decrease of the acetylene/nitrogen ratio, which is consistent with the Raman results of the ID/IG ratio. Rougher films with higher residual stress were obtained when using a deposition pressure higher than 40.0 Pa (0.3 torr). For the effect of plasma post-treatment using different atmospheres, surface smoothing was found for the hydrogen plasma post-treatment, whereas nitrogen and argon plasma post-treatments resulted in surface roughening. Hydrogen plasma post-treatment was found to lower the surface roughness without significantly sacrificing the hardness.  相似文献   

12.
In this study diamond-like carbon (DLC) films were deposited by a dual-mode (radio frequency/microwave) reactor. A mixture of hydrogen and methane was used for deposition of DLC films. The film structure, thickness, roughness, refractive index of the films and plasma elements were investigated as a function of the radio frequency (RF) and microwave (MW) power, gas ratio and substrate substance. It was shown that by increasing the H2 content, the refractive index grows to 2.63, the growth rate decreases to 10 (nm/min) and the surface roughness drops to 0.824 nm. Taking into consideration the RF power it was found that, as the power increases, the growth rate increases to 11.6 (nm/min), the variations of the refractive index and the roughness were continuously increasing, up to a certain limit of RF power. The Raman G-band peak position was less dependent on RF power for the glass substrate than that of the Si substrate and a converse tendency exists with increasing the hydrogen content. Adding MW plasma to the RF discharge (dual-mode) leads to an increase of the thickness and roughness of the films, which is attributed to the density enhancement of ions and radicals. Also, optical emission spectroscopy is used to study the plasma elements.  相似文献   

13.
Radiofrequency (13.56 MHz) plasma enhanced chemical vapor deposition process is used for deposition of SiOx films on bell metal substrates using Ar/hexamethyldisiloxane/O2 glow discharge. The DC self-bias voltage developed on the substrates is observed to be varied from − 35 V to − 115 V depending on the RF power applied to the plasma. Plasma potential measurements during film deposition process are carried out by self-compensated emissive probe. The deposited films are characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nanoindentation, nano-scratch test and thermogravimetric analysis. The characterization results show strong dependency of the SiOx films properties on the energy of the ions impinging on the substrates during deposition. Analysis of Raman spectra indicates an increase in vitreous silica content and reduction in defective Si-O-Si chemical structure in the deposited SiOx films with increasing ion energy impinging on the substrates. The increase in inorganic (Si and O) content in the SiOx films is further confirmed from XPS analysis. The growth of SiOx films with more inorganic content and defect free chemical structure apparently contribute to the increase in their hardness and scratch resistance behavior. The films show higher thermal stability as the energy of the ions arriving at substrates increases with DC self-bias voltage. The possibility of using SiOx films for surface protection of bell metal is also explored.  相似文献   

14.
The present study reports on the growth of thin TiO2 films onto Au(100) single crystals by Ti evaporation in a reactive O2 atmosphere at two different substrate temperatures: room temperature (RT) and 300 °C. The growth of the oxide films was monitored by means of X-ray photoemission spectroscopy, while the valence and conduction band electronic structure was investigated by UV and inverse photoemission spectroscopy, respectively.The TiO2 film grows epitaxially on the Au(100) substrate at 300 °C exhibiting the rutile (100) surface. The evolution of the Ti 2p lineshape with the oxide coverage shows the presence of reduced oxide species (characterized by Ti3 + ions) at the Au(100) interface. A crystalline and stoichiometric TiO2 oxide is produced at high substrate temperature, while growth at RT gives a measurable concentration of defects. Post growth annealing in ultra-high vacuum of the RT grown film increases this concentration, while subsequent annealing in O2 atmosphere restores the sample to the as-grown conditions.  相似文献   

15.
Growth of carbon nanofibers and nanotubes by combination of aerosol synthesis and plasma-enhanced catalytic chemical vapor deposition with alcohol as carbon precursor is presented. Only a hollow cathode glow discharge (HCGD) is used as gas activation process without any specific heating of the substrate. Specially designed hollow cathode enables the evaporation of catalyst directly on the substrate for catalytic growth. Product of physical vapor deposition process was examined by energy dispersive X-ray spectrometer (EDS). Spectroscopic features of the plasma were monitored by optical emission spectroscopy (OES). Carbon deposition was examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Catalytic nanofibers and multi-walled carbon nanotubes with outer diameters 20-60 nm have been observed.  相似文献   

16.
Diamond-like carbon (DLC) films were synthesized by RF plasma enhanced chemical vapor deposition and the effects of plasma pre-treatment and post-treatment on the DLC films were investigated. Experimental results show that the surface roughness of the substrate, ranging from 0.2 to 1.2 nm, created by the plasma pre-treatment, will affect the surface roughness of the DLC films deposited using methane as the carbon source. However, the film surface roughness (0.1-0.4 nm) is much smaller than that of the substrate. Raman analysis and hardness measurement by nanoindentation indicate that the structure and the hardness of the DLC films are relatively unchanged for the film surface roughness investigated. For the argon or hydrogen plasma post-treatment of the DLC films deposited using acetylene as the carbon source, it is found that surface roughness decreases with the post-treatment time. Although the hardness decreases after post-treatment, it remains relatively constant with increasing post-treatment time.  相似文献   

17.
在不同的衬底温度下,通过脉冲激光淀积(PLD)方法在Si衬底上生长出c轴高度取向的ZnO薄膜。ZnO薄膜的结构分别通过X射线衍射(XRD)和广延X射线吸收精细结构(EXAFS)来表征,而表面成份和化学态则通过X射线光电子能谱来研究。利用光致发光(PL)来研究样品的发光特性。XRD结果和EXAFS结果都表明了500℃时生长的ZnO薄膜的结晶性比300℃时生长的要好。EXAFS结果和XPS结果显示,300℃时生长的ZnO薄膜处于富氧状态,而500℃时生长的则处于缺氧状态。结合XRD谱、EXAFS谱、XPS谱和PL谱的结果可以看到:随着ZnO薄膜的结晶性变好,它的紫外发光增强;另一方面,随着ZnO薄膜中O的含量减少,绿光发射变强。我们的结果表明绿光发射与ZnO中氧空位(V0)有关。  相似文献   

18.
The effect of deposition temperature and nitrogen inclusion in amorphous carbon (a-C) films, deposited by plasma enhanced pulsed laser deposition, on chemical composition and electronic transport has been studied. a-CNx films were deposited on Si (100) by pulsed ArF laser ablation of a graphite target, under N2 atmosphere. A radiofrequency (13.56 MHz RF) apparatus was used to generate plasma of excited nitrogen species, and its effect on nitrogen uptake and CNx film formation has been studied. Chemical and micro-structural changes associated to increased deposition temperature and nitrogen incorporation were examined by x-ray photoelectron spectroscopy; electrical properties were analyzed by the four-point-probe methods. Temperature-dependent conductivity measurements are tentatively interpreted and discussed in reference to chemical composition.  相似文献   

19.
The annealing effects on the structural and electrical properties of fluorinated amorphous carbon (a-C:F) thin films prepared from C6F6 and Ar plasma are investigated in a N2 environment at 200 mTorr. The a-C:F films deposited at room temperature are thermally stable up to 250 °C, but as the annealing temperature is increased beyond 300 °C, the fluorine incorporation in the film is reduced, and the degree of crosslinking and graphitization in the film appears to be enhanced. At the annealing temperature of 250 °C, the chemical bond structures of the film are unchanged noticeably, but the interface trapped charges between the film and the silicon substrate are reduced significantly. The increased annealing temperature contributes the decrease of both the interface charges and the effective charge density in the a-C:F film. Higher self-bias voltage is shown to reduce the charge density in the film.  相似文献   

20.
Amorphous hydrogenated silicon carbide (a-SiC:H) coatings are promising candidates for tribological applications in the mechanical and aeronautical industries. Alternately high values of hardness H (15 < H < 32 GPa) and elastic modulus E contribute to their good wear resistance as well as to a low friction coefficient. The latter has been found to vary in the range 0.1 < μ < 0.65, depending upon the microstructure of the layers. The roughness of the films determined by atomic force microscopy is in all cases low (Ra ~ 5 nm). Comparisons between the tests carried out in air and those performed under vacuum conditions point to a substantial role of the adhesive part of the friction coefficient in vacuum. They also highlight the role played by the transfer layer between the film and the pin in producing a low friction coefficient for several coatings. This transfer layer consists chiefly of silicon and oxygen (O/Si ~ 2), whilst low quantities of carbon are also present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号