首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, the TiO2/Al2O3 composite nanoparticles were prepared by a hydrothermal method and in situ modified with acrylic acid. It was found that the mean particle size of modified TiO2/Al2O3 composite nanoparticles was about 80 nm with a uniform distribution by the particle size analysis. The modified TiO2/Al2O3 composite nanoparticles can disperse in lubricating oil homogenously for several weeks. The dispersion stabilization of modified TiO2/Al2O3 composite nanoparticles in lubricating oil was significantly improved in comparison with the as-prepared nanoparticles, which was due to the introduction of grafted polymers by surface modification. The formation of covalent bands was identified by Fourier transform infrared spectrum. Under an optimized concentration of 0.1 wt%, the averaged friction coefficient was reduced by 14.75%, when the modified TiO2/Al2O3 composite nanoparticles were used as lubricating oil additivities.  相似文献   

2.
In this study, TiO2 nanocomposite films with 10 g/L of TiO2 and copper loaded TiO2 nanoparticles as nanofillers were deposited on the glass substrates using the sol gel dip-coating method. FE-SEM and UV-vis spectrophotometer were used to evaluate morphological and optical properties of copper loaded titania nanoparticles. In addition, XPS and water contact angle techniques were used to study the surface properties and superhydrophilicity of titania nanocomposite films, respectively. The results indicated that copper loaded TiO2 nanoparticles had a significant effect on the hydrophilicity of nanocomposite film and maintaining it in a dark place for a long time (6.2 degree for titania nanocomposite films with copper loaded nanoparticle and 23.7 degree for nanocomposite film with titania nanoparticles).  相似文献   

3.
In this study, the nanoparticles (i.e. SiO2 and Al2O3 nanoparticles) and methanol are combined into SiO2/methanol and Al2O3/methanol nanofluids to enhance the CO2 absorption rate of the base fluid (methanol). The absorption experiments are performed in the bubble type absorber system equipped with mass flow controller (MFC), mass flow meter (MFM) and silica gel (which can remove the methanol vapor existing in the outlet gases). The parametric analysis on the effects of the particle species and concentrations on CO2 bubble absorption rate is carried out. The particle concentration ranges from 0.005 to 0.5 vol%. It is found that the CO2 absorption rate is enhanced up to 4.5% at 0.01 vol% of Al2O3/methanol nanofluids at 20 °C, and 5.6% at 0.01 vol% of SiO2/methanol nanofluids at −20 °C, respectively.  相似文献   

4.
AZ31 nanocomposite containing Al2O3 nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The Al2O3 nanoparticle reinforcement was isolated prior to melting by wrapping in Al foil of minimal weight (<0.50 wt% with respect to AZ31 matrix weight). The AZ31 nanocomposite exhibited slightly smaller grain and intermetallic particle sizes than monolithic AZ31, reasonable Al2O3 nanoparticle distribution, non-dominant (0 0 0 2) texture in the longitudinal direction unlike monolithic AZ31, and 30% higher hardness than monolithic AZ31. Compared to monolithic AZ31, the AZ31 nanocomposite exhibited higher 0.2%TYS, UTS, failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Also, compared to monolithic AZ31, the AZ31 nanocomposite exhibited higher 0.2%CYS and UCS, similar failure strain, and higher WOF (+5%, +5%, −4% and +11%, respectively). Inclusive of crystallographic texture changes, the effect of Al2O3 nanoparticle integration on the enhancement of tensile and compressive properties of AZ31 is investigated in this paper.  相似文献   

5.
This study investigates the growth behavior of atomic-layer-deposited (ALD) Al2O3 overlayers on porous TiO2 electrodes, which comprise an anatase nanoparticle layer and a rutile particle layer, for optimizing dye-sensitized solar cells. The growth mode of the ALD Al2O3 overlayers changes from island growth to layer-by-layer growth during the first few ALD reaction cycles, and the growth mode transition is much more pronounced for the anatase electrode layer. The transition is likely a result of the reduction in the contractive lattice strain of the TiO2 nanoparticles. The lattice strain in the hydroxylated TiO2 nanoparticles is progressively reduced during the ALD Al2O3 deposition, resulting in the growth mode transition.  相似文献   

6.
Small Au nanoparticles (NPs) with mean diameter of 4.1 nm were highly deposited on TiO2 films via a simple electrostatic self-assembly method. The physically separated Au NPs, with a high surface density of 6.3 × 1011 NPs/cm2, were mainly distributed on the top layer of porous TiO2 films. The deposition of Au NPs induced a negative shift (~ 100 mV) of the apparent flat band potential of Au-TiO2 electrodes. The charge separation efficiency of the TiO2 electrode increased from 72.1% to 88.5% by dispersing Au NPs. Whatever redox species were present in the electrolyte, the Au-TiO2 electrode had higher photovoltage than the TiO2 electrode. The photovoltage was very sensitive to added redox species such as O2, O3, and methanol, and the effect of adsorbed redox species on electron accumulation was discussed. The electrochemical impedance spectroscopic measurements revealed that the charge transfer resistance (Rct) of Au-TiO2 films was reduced to 16% of bare TiO2 electrode, and the decreased Rct corresponded to the increased photocatalytic activity of Au-TiO2 films. The beneficial role of uniformly dispersed small Au NPs on the charge separation was discussed. By modifying TiO2 films with small Au NPs, the photocatalytic activity of TiO2 films for formaldehyde degradation increased about 2.5 times.  相似文献   

7.
Al2O3/BN composite ceramics with nano-sized BN dispersions ranging from 0 to 30 vol.% were successfully fabricated by hot-pressing α-Al2O3 powders with turbostratic BN (t-BN) coating, which was prepared through chemical processes using boric acid and urea. SEM observations revealed that the nano-sized hexagonal BN (h-BN) particulates were homogeneously dispersed within Al2O3 grains as well as at grain boundaries. Vickers hardness of materials decreased with an increase in BN content. The fracture toughness was improved but the fracture strength had a small decrease, in comparison to Al2O3 monolithic ceramics. The nanocomposite ceramics with BN content more than 20 vol.% exhibited excellent machinability, which could be drilled using conventional hard metal alloy drills. Drilling rates and normal forces demonstrate the ease of machining of these materials. The preliminary information on the relationship between microstructures and properties are provided. The mechanism of material removal is also discussed.  相似文献   

8.
This article reports a study on the preparation, densification process, and structural and optical properties of SiO2-Ta2O5 nanocomposite films obtained by the sol-gel process. The films were doped with Er3+, and the Si:Ta molar ratio was 90:10. Values of refractive index, thickness and vibrational modes in terms of the number of layers and thermal annealing time are described for the films. The densification process is accompanied by OH group elimination, increase in the refractive index, and changes in film thickness. Full densification of the film is acquired after 90 min of annealing at 900 °C. The onset of crystallization and devitrification, with the growth of Ta2O5 nanocrystals occurs with film densification, evidenced by high-resolution transmission electron microscopy. The Er3+-doped nanocomposite annealed at 900 °C consists of Ta2O5 nanoparticles, with sizes around 2 nm, dispersed in the SiO2 amorphous phase. The main emission peak of the film is detected at around 1532 nm, which can be assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposites. This band has a full width at half medium of 64 nm, and the lifetime measured for the 4I13/2 levels is 5.4 ms, which is broader compared to those of other silicate systems. In conclusion, the films obtained in this work are excellent candidates for use as active planar waveguide.  相似文献   

9.
A novel and rapid microwave method was used to prepare TiO2 coated ZnO nanocomposite particles. The resulted particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Results show that ZnO nanoparticles were coated with 6-10 nm amorphous TiO2 layers. In addition, zeta potential analysis demonstrated the presence of TiO2 layer on the surface of ZnO nanoparticles. Photoluminescence (PL) spectroscopy and UV-visible spectroscopy were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnO nanoparticles, the TiO2 coated ZnO nanoparticles showed enhanced UV emission. The UV-visible diffuse reflectance study revealed the significant UV shielding characteristics of the nanocomposite particles. Moreover, amorphous TiO2 coating effectively reduced the photocatalytic activity of ZnO nanoparticles as evidenced by the photodegradation of Orange G with uncoated and TiO2 coated ZnO nanoparticles under UV radiation.  相似文献   

10.
A thin-film structure comprising Al2O3/Al-rich Al2O3/SiO2 was fabricated on Si substrate. We used radio-frequency magnetron co-sputtering with Al metal plates set on an Al2O3 target to fabricate the Al-rich Al2O3 thin film, which is used as a charge storage layer for nonvolatile Al2O3 memory. We investigated the charge trapping characteristics of the film. When the applied voltage between the gate and the substrate is increased, the hysteresis window of capacitance-voltage (C-V) characteristics becomes larger, which is caused by the charge trapping in the film. For a fabricated Al-O capacitor structure, we clarified experimentally that the maximum capacitance in the C-V hysteresis agrees well with the series capacitance of insulators and that the minimum capacitance agrees well with the series capacitance of the semiconductor depletion layer and stacked insulator. When the Al content in the Al-rich Al2O3 is increased, a large charge trap density is obtained. When the Al content in the Al-O is changed from 40 to 58%, the charge trap density increases from 0 to 18 × 1018 cm− 3, which is 2.6 times larger than that of the trap memory using SiN as the charge storage layer. The device structure would be promising for low-cost nonvolatile memory.  相似文献   

11.
Formation of NiFe2O4 nanoparticles by mechanochemical reaction   总被引:1,自引:0,他引:1  
Preparation of nanosized NiFe2O4 particles by mechanochemical reaction(NiO+α-Fe2O3) and subsequent thermal treatment was investigated using X-ray diffraction (XRD). Thermal treatment of the as-milled powder at 700 °C for 1 h led to the formation of NiFe2O4 nanoparticles with an average crystal size of about 23 nm. Effect of thermal treatment temperature on the crystal size of the nanoparticles was studied. The mechanism of nanoparticles growth was primarily discussed. The activation energy of NiFe2O4 nanoparticle formation during calcination was calculated to be 16.6 kJ/mol.  相似文献   

12.
This paper presents a novel technique to create Al2O3 hollow spherical nanoparticles. It used Al(OH)3 which was synthesized with Al2(SO4)3 and NaOH, and the C-Al(OH)3 core-shell nanoparticle as intermediate phases. The Al2O3 hollow spheres were achieved by the calcination of the carbon cores and the dehydration of Al(OH)3. The chemical composition, morphology, size and superficial crystal structure of the nanoparticles were characterized with TEM, XRD, TGA, FTIR and BET. The result shows that the average diameter of the C-Al(OH)3 core-shell nanoparticles is about 25 nm, the thickness of the Al2O3 shell is about 5 nm and the surface area is 215.2 m2/g. The procedure for the formation of Al2O3 hollow nanoparticles is discussed in details.  相似文献   

13.
The microwave characteristics and the microstructures of 0.88Al2O3-0.12TiO2 with various amounts of MgO-CaO-SiO2-Al2O3 (MCAS) glass sintered at different temperatures have been investigated. The sintering temperature can be lowered to 1300 °C by the addition of MCAS glass. The densities, dielectric constants (εr) and quality values (Q×f) of the MCAS-added 0.88Al2O3-0.12TiO2 ceramics decrease with the increase of MCAS glass content. The temperature coefficients of the resonant frequency (τf) are shifted to more negative values as the MCAS content or the sintering temperatures increase. The change of the crystalline phases of Al2TiO5 phase and rutile-TiO2 phase has profound effects on the microwave dielectric properties of the MCAS-added Al2O3-TiO2 ceramics. As sintered at 1250 °C, 0.88Al2O3-0.12TiO2 ceramics with 2 wt.% MCAS glass addition exists a εr value of 8.63, a Q×f value of 9578 and a τf value of +5 ppm/°C.  相似文献   

14.
An investigation on the structure of an ultrasonically cast nanocomposite of Al with 2 wt.% nano-sized Al2O3 (average size ∼10 nm) dispersoids showed that the nanocomposite was consisting of nearly continuous nano-alumina dispersed zones (NDZs) in the vicinity of the grain boundaries encapsulating Al2O3 depleted zones (ADZs). The mechanical properties were investigated by nanoindentation and tensile tests. The nano-sized dispersoids caused a marginal increase in the elastic modulus, and a significant increase in the hardness (∼92%), and tensile strength (∼48%). Subsequent cold rolling to achieve a reduction ratio of 2 resulted in an appreciable increase in the hardness due to change in morphology of the microstructure. Estimation of the strength on the basis of inter-particle spacing, which was measured by transmission electron microscopy, could not be accounted for on the basis of Orowan mechanism, and therefore, strengthening mechanisms like local climb and/or cross slip might have a role in this room temperature (0.32TM) deformation process.  相似文献   

15.
Al2O3/TiAl composites were successfully fabricated from powder mixtures of Ti, Al, TiO2 and Cr2O3 by a hot-press-assisted exothermic dispersion method. The effect of the Cr2O3 addition on the microstructures and mechanical properties of Al2O3/TiAl composites was characterized, and the results showed that the Rockwell hardness, flexural strength and fracture toughness of the composites increased as the Cr2O3 content increased. When the Cr2O3 content was 2.5 wt%, the flexural strength and the fracture toughness attained peak values of 925 MPa and 8.55 MPa m1/2, respectively. This improvement of mechanical properties was due to the more homogeneous and finer microstructure developed from the addition of Cr2O3 and an increase in the ratio of α2-Ti3Al to γ-TiAl matrix phases.  相似文献   

16.
Jun Chen  Li Zhang 《Materials Letters》2009,63(21):1797-1799
A simple, low temperature and low cost method, which was based on heating the mixture of Ti and NH4Cl powders in air at 300 °C, has been developed for the controlled synthesis of anatase TiO2 nanostructures including irregular nanoparticle aggregates, curved nanowires built up by the oriented attachment of nanoparticles, and nanoplates constructed with nanoparticles. The characterization results from X-ray diffraction and Raman spectra indicated that the as-obtained products were anatase TiO2. Field emission scanning electron microscope images revealed that the products obtained for 3, 10 and 16 h comprised, in turn, irregular nanoparticle aggregates (8-55 nm), curved nanowires built up by the oriented attachment of nanoparticles (~ 9 nm), and nanoplates constructed with nanoparticles (~ 8 nm).  相似文献   

17.
Al2O3/3Y-TZP (30 vol.%) composite was pressurelessly sintered with addition of TiO2MnO2 and/or CaOAl2O3SiO2 glass. It was found that TiO2MnO2 addition greatly enhanced the densification of the composite by the formation of a low-viscosity liquid at sintering temperature. In contrast, the high-viscosity liquid formed by CaOAl2O3SiO2 glass improved mechanical properties because of its repressing effect on grain growth. The composite could be obtained at a temperature as low as 1400°C by co-doping with TiO2MnO2 and CAS glass. Bending strength of 552±64 MPa and fracture toughness of 6.03±0.22 MPa m1/2 were obtained with a doping level of 2 wt.% TiO2MnO2 and 2 wt.% CAS glass.  相似文献   

18.
Al and TiO2 powders were selected to fabricate in situ Al composites via multiple pass friction stir processing (FSP) based on the thermodynamic analysis. The microstructural investigations indicated FSP would induce reaction between Al and TiO2. Al3Ti and Al2O3 particles were formed after 4 pass FSP with 100% overlapping. The in situ particles were about 80 nm in size at various FSP conditions, and ultrafine matrix grains 602 nm in size were obtained when water cooling was applied during FSP. Tensile tests indicated that the in situ nanocomposites exhibited pronounced work hardening behavior and a good combination of strength and ductility.  相似文献   

19.
Na2Ti2O4(OH)2 nanotubes were obtained by hydrothermal reaction of TiO2 with concentrated NaOH solution. CdS nanoparticles were then decorated on Na2Ti2O4(OH)2 nanotubes through partial ion-exchange method. The composite photocatalysts were characterized by X-ray diffraction (XRD), ultraviolet-visible spectra (UV-vis), transmission electron microscope (TEM), etc. The results showed that CdS nanoparticles of 5-6 nm were anchored on the surface of the Na2Ti2O4(OH)2 nanotubes. Under irradiation of visible light (λ ≥ 430 nm), the prepared CdS/Na2Ti2O4(OH)2 showed high photoactivity for hydrogen production.  相似文献   

20.
In the present work, the effect of curing medium on microstructure together with physical, mechanical and thermal properties of concrete containing Al2O3 nanoparticles has been investigated. Portland cement was partially replaced by Al2O3 nanoparticles with the average particle size of 15 nm and the specimens were cured in water and saturated limewater for specific ages. The results indicate that Al2O3 nanoparticles up to maximum of 2.0% produces concrete with improved compressive strength and setting time when the specimens cured in saturated limewater. The optimum level of replacement for cured specimens in water is 1.0 wt%. Although the limewater reduces the strength of concrete without nanoparticles when it is compared with the specimens cured in water, curing the specimens bearing nanoparticles in saturated limewater results in more strengthening gel formation around Al2O3 nanoparticles causes more rapid setting time together with high strength. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of peaks related to hydrated products in X-ray diffraction results, all indicate that Al2O3 nanoparticles could improve mechanical and physical properties of the specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号