首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the controlled hydrothermal growth of rutile TiO2 nanorods on Si wafers by using an anatase TiO2 nanodot film as an assisted growth layer. The anatase nanodot film was prepared on the wafer by phase-separation-induced self-assembly and subsequent heat-treatment at 500 °C. The nanodots on the wafer were then subjected to hydrothermal treatment to induce the growth of rutile TiO2 nanorod films. The size and dispersion density of the resulting TiO2 nanorods could be varied by adjusting the Ti ion concentration in the growth solution. The TiO2 nanorods were of the rutile phase and grew in the [001] direction. The growth mechanism reveals that the growth of the rutile nanorods was wholly dependent on the existence of rutile TiO2 seeds, which could be formed by the dissolution-reprecipitation of the anatase nanodots during hydrothermal treatment or under the high-temperature conditions of the subsequent heat-treatment of the as-prepared nanodots. In controlling the rutile nanorod growth, the anatase nanodots show more efficiency than a dense anatase film. Preliminary evaluations of the rutile nanorod films have demonstrated that the wettability changed from highly hydrophobic to superhydrophilic and that the photocatalytic activity was enhanced with increasing nanorod dispersion density.  相似文献   

2.
Structural and microstructural analyses of nanocrystalline titania thin films prepared by pulsed laser deposition have been carried out. At lower oxygen partial pressures (≤10−4 mbar), rutile films were formed, whereas at 1.2 × 10−3 mbar of oxygen partial pressure, the thin films contained both rutile and anatase phases. At 0.04 and 0.05 mbar of oxygen partial pressure, the film was purely anatase. Addition of oxygen has also shown a profound influence on the surface morphology of the as deposited titania films. Modified Rietveld method has been used to determine crystallite size, root mean square strain and fractional coordinates of oxygen of the anatase films. The influence of crystallite size and strain on the rutile to anatase phase transition is investigated.  相似文献   

3.
Rutile TiO2 nanorod films have been successfully prepared on titanium substrate via a hydrothermal method using Tetra-n-butyl titanate as Ti source in the presence of concentrated hydrochloric acid. The effect of Ti substrate annealing treatment and adding of additional alkali metal chlorides in hydrothermal solution on the growth of TiO2 nanorod films has been studied using scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and water contact angle measurement. The growth mechanism of the TiO2 nanorods on Ti substrate has also been discussed. It has shown that the initial rutile film transformed from anatase promotes the nucleation and epitaxial growth of rutile TiO2 nanorods. The superior wettabilities of the TiO2 nanorods resulted from treatments of vacuum and ultraviolet show great potential for applications in orthopaedic, dental implants, and possible photocatalysis.  相似文献   

4.
Structural engineering of thin films of vertically aligned TiO2 nanorods   总被引:1,自引:0,他引:1  
Y. Zhang  X.H. Xia  M.L. Guo  G. Shao 《Materials Letters》2010,64(14):1614-1617
Self-assembled and vertically aligned rutile titania nanorods and thin films with a preferred [002] axial orientation were grown on substrates of fluorine-doped tin dioxide, using a hydrothermal method. Each nanorod was made of a bundle of densely packed and ultra fine nano-fibers growing along the [002] direction. The results show that ethanol substitution of water as solvent is highly effective in promoting the one-dimensional growth of the rutile nanorods and increasing their packing density in the thin films, which offers a simple-but-effectual leverage to monitor the nanorod structures for varied applications.  相似文献   

5.
Layered anatase‐rutile titania thin‐films were synthesized via atmospheric‐pressure chemical vapor deposition and characterized using X‐ray diffraction, Raman spectroscopy and electron microscopy. The interposition of an amorphous TiO2‐based interlayer allowed direct vapor deposition of anatase on a rutile substrate, which is otherwise hindered by templating. This resourceful approach and the subsequent crystallization of the amorphous layer after annealing of the films allowed investigation on the impact of an efficient interface of the two anatase‐rutile phases in the photodegradation of a model organic pollutant. Clear evidence is presented on the synergy between the two polymorphs and more importantly, on the charge flow across the interface, which, against much conventional understanding, it involves electron transfer from rutile to anatase and is in agreement with a recent theoretical model and electron paramagnetic resonance data. Here, an increasing density of trapped electrons on the anatase surface of the A/R film is confirmed by photoreduction of silver. This observation is attributed to a defect‐free efficient contact between the two phases and the presence of small rutile particles that promote rapid electron transfer at the A‐R interface of the films.  相似文献   

6.
硅掺杂TiO2纳米管阵列的制备及光电催化活性的研究   总被引:1,自引:0,他引:1  
通过电化学沉积,在阳极氧化法制备的高度有序TiO2纳米管阵列表面均匀地沉积Si元素.扫描电子显微照片显示Si掺杂的TiO2纳米管垂直于基底定向生长.X射线衍射分析表明,所引入的Si可能掺入到TiO2的晶格中,因而提高了TiO2的热稳定性,抑制了金红石相的生成及晶粒的长大.紫外-可见漫反射分析表明Si掺杂的TiO2纳米管吸收边带发生了明显的蓝移,并且在紫外区的吸收强度明显增强.与未掺杂的TiO2纳米管相比,Si掺杂TiO2纳米管电极的紫外光电化学响应显著提高,其光电流密度是未掺杂的1.48倍.硅掺杂TiO2纳米管阵列光电催化降解五氯酚的动力学常数(1.651h-1)是未掺杂TiO2纳米管电极(0.823h-1)的2.0倍.  相似文献   

7.
本文采用反射式高能电子衍射(RHEED)监测脉冲激光沉积法制备钛酸铅薄膜过程.根据PbTiO3/MgO(001)薄膜、PbTiO3/Si(100)薄膜生长过程中RHEED强度的时间演变,分析基片对薄膜生长模式的影响.并且观测不同生长时刻的RHEED强度的空间分布,讨论生长过程中薄膜表面的台阶尺寸变化.另外,比较在不同氧分压下沉积的钛酸铅薄膜表面的RHEED图案,发现氧气将改变薄膜的微结构,提高薄膜的结晶性.  相似文献   

8.
Conformity and phase structure of atomic layer deposited TiO2 thin films grown on silicon substrates were studied. The films were grown using TiCl4 and Ti(OC2H5)4 as titanium precursors in the temperature range from 125 to 500 °C. In all cases perfect conformal growth was achieved on patterned substrates with elliptical holes of 7.5 μm depth and aspect ratio of about 1:40. Conformal growth was achieved with process parameters similar to those optimized for the growth on planar wafers. The dominant crystalline phase in the as-grown films was anatase, with some contribution from rutile at relatively higher temperatures. Annealing in the oxygen ambient resulted in (re)crystallization whereas the effect of annealing depended markedly on the precursors used in the deposition process. Compared to films grown from TiCl4, the films grown from Ti(OC2H5)4 were transformed into rutile in somewhat greater extent, whereas in terms of step coverage the films grown from Ti(OC2H5)4 remained somewhat inferior compared to the films grown from TiCl4.  相似文献   

9.
Colloidal noble metal nanocrystals are promising for a large number of optical and biotechnological applications. Many practical applications require the formation of large‐area, high‐density, and uniformly distributed metal nanocrystal arrays on various substrates, to overcome the limitations brought by the instability of colloidal metal nanocrystal solutions and the high cost of single‐particle spectroscopy characterizations. A method is developed for directly depositing colloidal metal nanocrystals, including Au nanospheres, Au nanorods, Au nanobipyramids, and (Au core)/(Ag shell) nanorods, from their solutions onto different substrates. The resultant nanocrystal arrays are relatively uniform and dense, with the peak extinction value of a single layer reaching 0.3. Their areas are up to 10 cm by 10 cm and can be further increased if larger‐size containers are utilized. The refractive index sensitivities are studied for Au nanorod arrays supported on glass slides, mesoporous silica and titania films, and capped with different molecules. Au nanorods deposited on mesoporous titania films are found to exhibit the highest index sensitivities, comparable to those of the same nanorod sample in solutions. It is expected that this approach will greatly facilitate plasmonic applications that require large‐area arrays of noble metal nanocrystals.  相似文献   

10.
采用脉冲激光沉积技术(PLD)在硅基片上生长了二氧化钛纳米晶氧化物薄膜, 系统讨论了基片温度、氧分压等因素对薄膜结构特性的影响.X射线衍射结果表明在氧气氛下, 生长的薄膜为锐钛矿结构, 其结晶性随着基片温度的升高而增强, 在750℃、5Pa氧压的情况下为完全c轴取向的锐钛矿相TiO2薄膜, 在750℃、5Pa氩气氛下则为(110)取向的金红石相薄膜. 场发射扫描电子显微镜结果表明薄膜表面致密, 呈纳米晶结构, 其晶粒尺寸在35nm左右.用傅立叶红外光谱和拉曼光谱对不同条件下制备的TiO2薄膜进行了表征.紫外-可见透射光谱的测试结果表明, 薄膜在可见光区具有良好的透过率, 计算得到制备的锐钛矿和金红石相TiO2薄膜在550nm处的折射率分别为2.3和2.5, 其光学带隙分别为3.2和3.0eV.因此通过沉积条件的改变可得到结晶性能和光学性能都不同的TiO2薄膜.  相似文献   

11.
Titanium oxide films were prepared by RF magnetron sputtering onto glass substrates. The effects of RF power and deposition temperature on crystalline structure, morphology and energy gap were investigated, which were analyzed by X-ray diffraction, SEM and UV-Vis spectrometer, respectively. Results show that rutile phase is the favored structure during deposition. Applying RF power in the range of 50-250 W, the amorphous, rutile, and both rutile and anatase phases TiO2 films were obtained in sequence, while the content of anatase is similar in the range of 34-37% although the RF power increases. Increasing the deposition temperature, the anatase phase coexists in the rutile phase in the range of 100-200 degrees C, and the content of anatase increases from 20 to 41% with the deposition temperature. In addition, according to the morphology observation, the granulous surface is found in rutile phase while facetted surface in anatase phase when titanium oxide films deposited at various RF powers and substrate temperatures. The band gap energy of titanium oxide evaluated from (alphahv)1/2 versus energy plots show that the energy gap decreases with RF power increasing.  相似文献   

12.
利用射频磁控溅射技术通过Ti靶及TiO2靶在氩氧气氛中同时溅射制备TiO2薄膜,并对所得的样品进行不同温度的退火处理。采用X射线衍射、扫描电子显微镜、拉曼光谱和吸收谱研究了不同的靶材及退火温度对TiO2薄膜晶体结构、微观形貌及光学性质的影响。结果表明:由于靶材的不同,Ti靶溅射时氧分压较低,造成薄膜中存在大量的氧缺陷,晶相发育不完善,颗粒相比TiO2靶溅射时较小,从XRD和拉曼光谱来看,Ti靶溅射得到的TiO2薄膜更有利于金红石相的形成。薄膜的透过率随退火温度的升高而降低,TiO2靶材溅射的薄膜的光学带隙随温度升高而明显降低,而Ti靶得到的薄膜的光学带隙对退火温度的依赖关系不明显。  相似文献   

13.
Chen JS  Chao S  Kao JS  Lai GR  Wang WH 《Applied optics》1997,36(19):4403-4408
We used the electron-beam evaporation method in various oxygen partial pressure environments to deposit TiO(2) thin films on various glass substrates at 300 degrees C. We found the threshold oxygen partial pressures above which the film is transparent are different for films on various substrates. Below the threshold oxygen partial pressure, the refractive index and the extinction coefficient of the films varied from substrate to substrate. The films on substrates with higher threshold oxygen partial pressure were associated with a higher extinction coefficient and a higher growth rate. These phenomena are correlated with the appearance of rutile phase in the anatase phase, which is also correlated with variations in the Al(2)O(3) and Na(2)O content in the substrates. The Al(2)O(3) content in the substrate tends to enhance the formation of rutile phase in the film and to give a higher extinction coefficient for the film, while the Na(2)O content in the substrate tends to retard the rutile formation in the film and to give a lower extinction coefficient for the film.  相似文献   

14.
This work presents the influence of annealing on the structure and stoichiometry of europium (Eu)-doped titanium dioxide (TiO2). Thin films were fabricated by magnetron sputtering from a metallic Ti-Eu target in oxygen atmosphere and deposited on silicon and SiO2 substrates. After deposition the selected samples were additionally annealed in air up to 1070 K.Film properties were examined by means of X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) and the results were analyzed together with the undoped TiO2 thin films prepared under similar technological conditions.XRD results showed that depending on the Eu content, as-deposited thin films consisted of the TiO2-anatase or TiO2-rutile.An additional annealing will result in the growth of anatase crystals up to 35 nm, but anatase to rutile phase transformation has not been recorded. AFM images display high quality and a dense nanocrystalline structure. From the XPS Ti2p spectra the 4+oxidation state of Ti was confirmed. The O1s XPS spectra displayed the presence of an O2− photoelectron peak accompanied by an additional broader peak that originates from hydroxyl species chemisorbed at the sample surface. It has been found that Eu dopant increases the OH content on the surface of prepared TiO2:Eu thin films. The calculated O/Ti ratio was in the range of 1.85-2.04 depending on the sample.  相似文献   

15.
The growth of TiO2 films in the anatase crystal structure was investigated using reactive sputter deposition with H2O serving as the oxidizing species. With water vapor, the formation of phase-pure anatase TiO2 thin films via epitaxial stabilization on (001) LaAlO3 was achieved, although crystallinity was slightly inferior to that obtained when O2 was employed. Films grown using water vapor exhibited a rougher surface morphology indicating a difference in growth mechanisms. At low H2O pressure, the formation of a TinO2n−1 Magnéli phase was observed. When hydrogen was employed during growth, mixed phase films of rutile and anatase resulted. The development of crystallinity and phase as a function of deposition temperature and oxidant pressure are discussed.  相似文献   

16.
P.K. Song  Y. Irie 《Thin solid films》2006,496(1):121-125
TiO2 films with thicknesses of 400-460 nm were deposited on the unheated non-alkali glass by radio frequency (rf) reactive magnetron sputtering using a Ti metal target. Depositions were carried out using a 3-in. 1000 G magnetron cathode with various rf substrate bias voltages (Vsb, dc component of self bias) of 10-80 V under total gas pressure of 1.0 or 3.0 Pa. The oxygen flow ratio [O2/(O2 + Ar)] and rf sputtering power were kept constant at 60% and 200 W, respectively. Photocatalytic activity on photoinduced oxidative decomposition of acetaldehyde (CH3CHO) of the TiO2 films showed a clear tendency to decrease with the increase in the Vsb during the deposition. Most of the films consisted of the mixture of anatase and rutile polycrystalline portions. It was confirmed that the rutile phase content increased and anatase phase content decreased markedly with increasing Vsb, where the crystallinity of anatase phase was much higher than that of rutile phase.  相似文献   

17.
Nano-columnar TiO2 grains are prepared and immobilized by chemical vapor deposition using TiCl4, H2 and O2 at low temperature. The structure of TiO2 is analyzed by X-ray diffraction (XRD), the morphology is observed by scanning electron microscopy (SEM) and the adhesion is estimated by measuring the critical load in scratch test. Results show that the structure of TiO2 films depend on the deposition temperature changing from amorphous, anatase, rutile, and both anatase and rutile phases as prepared at temperatures of 200, 300, 400 and 500 degrees C, respectively. The nano-columnar TiO2 grains are formed in both rutile and anatase phases, while it could be only rutile phase by increasing TiCl4 flow rate. The morphologies of TiO2 changes from smooth to nano-columnar grains as the deposition temperature increased from 200 to 400 degrees C. Excellent adhesion strength of crystalline TiO2 was obtained and it could be improved by increasing the TiCl4 flow rate in range of 0.3-0.6 sccm, where the critical load of TiO2 increases from 17 to 21 N.  相似文献   

18.
ZnO nanorods were produced by pulsed laser deposition (PLD). Drops of nanoparticle colloid (gold or silver) were placed on silica substrates to form growth nuclei. All nanoparticles were monocrystalline, with well-defined crystal surfaces and a negative electrical charge. The ZnO nanorods were produced in an off-axis PLD configuration at oxygen pressure of 5 Pa. The growth of the nanorods started from the nanoparticles in different directions, as one nanoparticle could become a nucleus for more than one nanorod. The low substrate temperature used indicates the absence of a catalyst during the growth of the nanorods. The diameters of the fabricated 1-D ZnO nanostructures were in the range of 50-120 nm and their length was determined by the deposition time.  相似文献   

19.
Nanosized rutile TiO2 is one of the most promising candidates for anode material in lithium-ion micro-batteries owing to their smaller dimension in ab-plane resulting in an enhanced performance for area capacity. However, few reports have yet emerged up to date of rutile TiO2 nanorod arrays growing along c-axis for Li-ion battery electrode application. In this study, single-crystalline rutile TiO2 nanorod arrays growing directly on Ti foil substrates have been fabricated using a template-free method. These nanorods can significantly improve the electrochemical performance of rutile TiO2 in Li-ion batteries. The capacity increase is about 10 times in comparison with rutile TiO2 compact layer.  相似文献   

20.
Anatase/rutile dual layers were deposited on titanium and polyethylene substrates when they were soaked in TiOSO4/H2O2 solution and aged in hot water: The dense bottom layer predominantly consisted of rutile, while the upper layer consisted of loosely packed aggregation of anatase particles. The titania deposition was the results of compromise among three conflicting processes: (1) hydrolysis of TiOSO4 to yield either soluble titania-H2O2 complexes or titania, (2) dissolution of the titania layer under the presence of H2O2, and (3) corrosive reactions between titanium substrates and H2O2 to yield similar complexes or compounds. The dissolution–deposition equilibrium was found associated with pH of the sulfate solution and changed with soaking time. Thus, proper pH value and soaking time in the treating solution were the two key factors to control the formation of dense titania layers. The resulted titania layers were easily covered with fine apatite particles when soaked in a solution supersaturated with its component ions. This paper is a partial contribution of Fan XIAO to her degree of Doctor of Philosophy, Okayama University, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号