首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incorporation of silicon can improve the bioactivity of hydroxyapatite (HA). Silicon-substituted HA (Ca10(PO4)6−x (SiO4) x (OH)2−x , Si-HA) composite coatings on a bioactive titanium substrate were prepared by using a vacuum-plasma spraying method. The surface structure was characterized by using XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated and XRD patterns showed that Ti/Si-HA coatings were similar to patterns seen for HA. The only different XRD pattern was a slight trend toward a smaller angle direction with an increase in the molar ratio of silicon. FTIR spectra showed that the most notable effect of silicon substitution was that –OH group decreased as the silicon content increased. XRD and EDS elemental analysis indicated that the content of silicon in the coating was consistent with the silicon-substituted hydroxyapatite used in spraying. A bioactive TiO2 coating was formed on an etched surface of Ti, and the etching might improve the bond strength of the coatings. The interaction of the Ti/Si-HA coating with human serum albumin (HSA) was much greater than that of the Ti/HA coating. This might suggest that the incorporation of silicon in HA can lead to significant improvements in the bioactive performance of HA.  相似文献   

2.
Magnesium apatite coatings on Ti6Al4V substrate were synthesized by the sol-gel dip-coating method. Magnesium was incorporated in the coating according to the formula (Ca10−xMgx)(PO4)6(OH)2, where x = 0, 0.50, 1.00, 1.50 and 2.00. Approximately 2-μm-thick apatite coatings were derived after five cycles of dip-drawing-drying-firing process. A transitional region (Rt) was formed between substrate and coating during the firing process. Adhesion tests show that the adhesion strength between substrate and apatite coating is enhanced by the incorporation of magnesium in the coating. The quantity of magnesium incorporated appeared to correspond to the Mg-Ti-O chemical bonds formed in the transitional region, which contributed to the adhesion strength of the coatings.  相似文献   

3.
For bone grafting applications, the elaboration of silicon containing beta-tricalcium phosphate (β-TCP) was studied. The synthesis was performed using a wet precipitation method according to the hypothetical theoretical formula Ca3 − x(PO4)2 − 2x(SiO4)x. Two silicon loaded materials (0.46 wt.% and 0.95 wt.%) were investigated and compared to a pure β-TCP. The maturation time of the synthesis required in order to obtain β-TCP decreased with the amount of silicon. Only restrictive synthesis conditions allow preparing silicon containing β-TCP with controlled composition. To obtain dense ceramics, the sintering behaviour of the powders was evaluated. The addition of silicon slowed the densification process and decreased the grain size of the dense ceramics. Rietveld refinement may indicate a partial incorporation of silicon in the β-TCP lattice. X-ray photoelectron spectroscopy and transmission electron microscopy analyses revealed that the remaining silicon formed amorphous clusters of silicon rich phase. The in vitro biological behaviour was investigated with MC3T3-E1 osteoblast-like cells. After the addition of silicon, the ceramics remained cytocompatible, highlighting the high potential of silicon containing β-TCP as optimised bone graft material.  相似文献   

4.
Magnesium-containing apatite coatings were prepared on Ti6Al4V substrates by sol-gel dip coating method. Standard simulated body fluid (SBF) was used to evaluate the bioactivity of the coatings. A series of the coatings according to the composition (Ca10−xMgx)(PO4)6(OH)2, where x = 0 to 2, is synthesized and immersed in the standard SBF for periods of 7 to 35 days for direct deposition of apatite layer from the SBF solution. Scanning electron microscopy (SEM) was used to examine the morphology changes of the SBF apatite layer that occurred during in vitro immersion. X-ray diffractometry, Fourier Transformation Infra-Red Spectroscopy and X-ray Photoelectron Spectroscopy were used to analyse the phases, chemical groups and composition of the sol-gel coating. Results show that as the sol-gel coating contains magnesium, this promotes deposition of apatite layer from SBF. As x ≤ 1, SBF immersion gives rise to a dense apatite layer. However, as ? 1, selected dissolution of the deposited layer takes place, which results in serious pitting on the surface. Also, Mg ions from the dissolution of the sol-gel coating during immersion in the SBF apparently played a role in the subsequent deposition of apatite o the coating, evidence of Mg was found in the apatite layer.  相似文献   

5.
Silicon-substituted hydroxyapatite (Si-HA) coatings with 0.14 to 1.14 at.% Si on pure titanium were prepared by a biomimetic process. The microstructure characterization and the cell compatibility of the Si-HA coatings were studied in comparison with that of hydroxyapatite (HA) coating prepared in the same way. The prepared Si-HA coatings and HA coating were only partially crystallized or in nano-scaled crystals. The introduction of Si element in HA significantly reduced P and Ca content, but densified the coating. The atom ratio of Ca to (P + Si) in the Si-HA coatings was in a range of 1.61–1.73, increasing slightly with an increase in the Si content. FTIR results displayed that Si entered HA in a form of SiO4 unit by substituting for PO4 unit. The cell attachment test showed that the HA and Si-HA coatings exhibited better cell response than the uncoated titanium, but no difference was observed in the cell response between the HA coating and the Si-HA coatings. Both the HA coating and the Si-HA coatings demonstrated a significantly higher cell growth rate than the uncoated pure titanium (p < 0.05) in all incubation periods while the Si-HA coating exhibited a significantly higher cell growth rate than the HA coating (p < 0.05). Si-HA with 0.42 at.% Si presented the best cell biocompatibility in all of the incubation periods. It was suggested that the synthesis mode of HA and Si-HA coatings in a simulated body environment in the biomimetic process contribute significantly to good cell biocompatibility.  相似文献   

6.
Thin films of Si-substituted hydroxyapatite (Si-HA) were deposited on Si and Ti substrates by pulsed laser deposition (PLD), in the presence of a water vapour atmosphere. The PLD ablation targets were made with different mixtures of commercial carbonated HA and Si powder, in order to produce the Si-HA thin films. The physicochemical properties of the coatings and the incorporation of the Si into the HA structure was studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Si atoms were successfully incorporated into the HA structure, and were found to be in the form of SiO44− groups, principally displacing carbonate groups off the HA structure.  相似文献   

7.
The phase relation of the compounds prepared in the CaO-SnO2-SiO2 system at 1673 K and in the CaO-TiO2-SiO2 system at 1573 K was investigated in order to explore new Ti4+-activated stannate phosphors. Solid solutions of Ca(Sn1−xTix)SiO5 and Ca3(Sn1−yTiy)Si2O9 were synthesized at x = 0-1.0 and y = 0-0.10, respectively, and their crystal structures were analyzed by powder X-ray diffraction. Photoluminescence of these solid solutions was observed in a broad range of a visible light wavelength region under ultraviolet (UV) light excitation. The peaks of the emission band of Ca(Sn0.97Ti0.03)SiO5 and Ca3(Sn0.925Ti0.075)Si2O9 were at 510 nm under excitation of 252 nm and at 534 nm under excitation of 258 nm, respectively. The absorption edges estimated by the diffuse reflectance spectra were at 300 nm (4.1 eV) for CaSnSiO5 and at 270 nm (4.6 eV) for Ca3SnSi2O9, suggesting that the excitation levels in Ca(Sn1−xTix)SiO5 were above the band gap of the host, although the levels in Ca3(Sn1−yTiy)Si2O9 were within the band gap and near the conduction band edge.  相似文献   

8.
The effects of Sr doping on the electrical properties of Ce0.75(Gd0.95−xSrxCa0.05)0.25O2−δ (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05 mol%) electrolytes thick films were investigated. The samples sintered at 1400 °C for 8 h. X-ray diffraction (XRD) showed typical XRD patterns of a cubic fluorite structure, and the ionic conductivity was examined by AC impedance spectroscopy. From the experimental results, it was observed that Ce0.75(Gd0.95−xSrxCa0.05)0.25O2−δ (x = 0.04 mol%) electrolytes thick film have higher conductivity and minimum activation energy at 600 °C. This is explained in terms of the increased in the oxygen vacancy concentration at the grain boundary.  相似文献   

9.
Plasma polymer coatings were deposited from hexamethyldisiloxane on polyethylene terephthalate (PET) substrates while varying the operating conditions, such as the Ar and O2 flow rates, at a fixed radio frequency power of 300 W. The water vapor transmission rate (WVTR) of the untreated PET was 54.56 g/m2/day and was decreased after depositing the silicon oxide (SiOx) coatings. The minimum WVTR, 0.47 g/m2/day, was observed at Ar and O2 flow rates of 4 and 20 sccm, respectively, with a coating thickness of 415.44 nm. The intensity of the peaks for the Si-O-Si bending at 800-820 cm− 1 and Si-O-Si stretching at 1000-1150 cm− 1 varied depending on the Ar and O2 flow rates. The contact angle of the SiOx coated PET increased as the Ar flow rate was increased from 2 to 8 sccm at a fixed O2 flow rate of 20 sccm. It decreased gradually as the oxygen flow rate increased from 12 to 28 sccm at a fixed Ar carrier gas flow rate. The examination by atomic force microscopy revealed a correlation of the SiOx morphology and the water vapor barrier performance with the Ar and O2 flow rates. The roughness of the deposited coatings increased when either the O2 or Ar flow rate was increased.  相似文献   

10.
Scheelite-type Ca1−xSmxMoO4+δ electrolyte powders were prepared by the sol-gel auto-combustion process. The crystal structure of the samples was determined by employing the techniques of X-ray diffraction (XRD). According to the XRD analysis, the formed continuous series of Ca1−xSmxMoO4+δ (0 ≤ x ≤ 0.3) solid solutions had the structure of tetragonal scheelite, and the lattice parameters increased with increasing x in the Sm-substituted system. Results of sinterability and electrochemical testing revealed that the performances of Sm-doped calcium molybdate were superior to that of pure CaMoO4. Ca1−xSmxMoO4+δ ceramics show higher sinterability, and the Ca0.8Sm0.2MoO4+δ sample with 98.7% of the theoretical density were obtained after being sintered at 1250 °C for 4 h. The conductivity increased with increasing samarium content, and a total conductivity 9.54 × 10−3 S cm−1 at 800 °C could be obtained in Ca0.8Sm0.2MoO4+δ sintered at 1250 °C for 4 h.  相似文献   

11.
In Ca2+-substituted NdCrO3, single-phase perovskite compounds (Nd1−xCax)CrO3, where x=0-0.25, have been formed by a citric acid processing. (Nd1−xCax)CrO3 powders consisting of submicrometer-size particles are sinterable; dense materials can be fabricated by sintering for 2 h at 1700°C under atmospheric pressure. The relative densities, grain sizes, and electrical conductivities increase with increased Ca2+ content. (Nd0.75Ca0.25)CrO3 materials show an excellent electrical conductivity of 1.9×10 S m−1 at 1000°C.  相似文献   

12.
La and Ca co-doped ceria-based electrolyte materials for IT-SOFCs   总被引:2,自引:0,他引:2  
Co-doped ceria-based electrolytes of Ce1−xLaxyCayO2−δ, wherein x = 0.15 and 0.20, 0 ≤ y ≤ x, were sintered from powders obtained by solid state reaction method. The phase identification, thermal expansion and ionic conductivities of samples were studied by X-ray diffraction (XRD), dilatometry and AC impedance spectroscopy (IS). Results showed that the samples of co-doping with La and Ca can significantly increase the ionic conductivity and lower activation energies compared with those of the singly doped ones in the temperature range of 500-800 °C. The ionic conductivities of co-doping samples decrease with Ca content. Although both systems reached the optimum ionic conductivity at y = 0.05, Ce0.85La0.15−yCayO2−δ exhibits better electrical performance. The results also showed that all the synthesized samples were fluorite-type ceria-based solid solutions. The thermal expansion was linear for all the samples.  相似文献   

13.
Oxyapatites are very promising materials in terms of ionic conductivity. They can be considered as a potential electrolyte for Solid Oxide Fuel Cells (SOFC). Doped silicated rare earth apatites with formula La9.33−xCax(SiO4)6O2−x/2 (0 ≤ x ≤ 1) have been prepared by solid state reaction at high temperature in order to determine the influence of anionic vacancies on the electrical properties of the material. The incorporation of calcium in the structure has been checked by characterizations of the powders (X-ray diffraction, helium pycnometry). The cell parameters of the hexagonal apatite were refined. Samples were sintered at 1550 °C. Electrical properties of each composition have been studied between 280 and 620 °C by the complex impedance method. The evolution of the bulk conductivity and of the activation energy with the substituting ratio gives information on the conductivity mechanism in these materials. An improvement of ionic conductivity about one order of magnitude has been observed for low calcium substitution ratios.  相似文献   

14.
The luminescent properties of Ca2Gd8(1−x)(SiO4)6O2:xDy3+ (1% ≤ x ≤ 5%) powder crystals with oxyapatite structure were investigated under vacuum ultraviolet excitation. In the excitation spectrum, the peaks at 166 nm and 191 nm of the vacuum ultraviolet region can be assigned to the O2− → Gd3+, and O2− → Dy3+ charge transfer band respectively, which is consistent with the theoretical calculated value using Jφrgensen's empirical formula. While the peaks at 183 nm and 289 nm are attributed to the f-d spin-allowed transitions and the f-d spin-forbidden transitions of Dy3+ in the host lattice with Dorenbos's expression. According to the emission spectra, all the samples exhibited excellent white emission under 172 nm excitation and the best calculated chromaticity coordinate was 0.335, 0.338, which indicates that the Ca2Gd8(SiO4)6O2:Dy3+ phosphor could be considered as a potential candidate for Hg-free lamps application.  相似文献   

15.
Silicon-substituted hydroxyapaptite (Si-HA) coatings were prepared on titanium substrates by electrolytic deposition technique in electrolytes containing Ca2+, PO4 3− and SiO3 2− ions with various SiO3 2−/(PO4 3− + SiO3 2−) molar ratios(ηsi). The deposition was all conducted at a constant voltage of 3.0 V, with titanium substrate as cathode and platinum as anode, for 1 h at 85°C. The coatings thus prepared were characterized with inductively coupled plasma (ICP), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), field-emission-type scanning electron microscope (FSEM). The results show that the silicon amount in the coatings increases linearly to about 0.48 wt% at first with increasing ηsi between 0 and 0.03, then increases slowly to about 0.55 wt% between 0.03 and 0.10 and finally maintains almost at a level around 0.55 wt% between 0.10 and 0.30. The tree-like Si-HA crystals are observed in the coatings prepared in the electrolyte of ηsi = 0.20. And the presence of silicon in electrolytes decreases the thickness of the coatings, with effect being more significant as ηsi increased. Additionally, the substitution of Si causes some OH loss and changes the lattice parameters of hydroxyapatite (HA).  相似文献   

16.
Glass-ceramics with a nominal composition of 25SiO2–(50 − x)CaO–15P2O5–8Fe2O3–2ZnO–xAg (where x = 0, 2 and 4 mol%) have been prepared. Structural features of glass-ceramics have been investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Magnetic properties were studied using vibrating sample magnetometer and Mössbauer spectroscopy. Ca3(PO4)2, hematite and magnetite are formed as major crystalline phases. The microstructure reveals the formation of 25–30 nm size particles. Mössbauer spectroscopy has shown the relaxation of magnetic particles. Saturation magnetization value is increased with an increase of Ag content up to 4 mol%, which has been attributed to the formation of magnetically ordered particles. The antibacterial response was found to depend on Ag ions concentration in the glass matrix and samples with 4 mol% Ag in glass matrix have shown effective antibacterial activity against Escherichia coli.  相似文献   

17.
Effects of substrate bias voltage and target sputtering power on the structural and tribological properties of carbon nitride (CNx) coatings are investigated. CNx coatings are fabricated by a hybrid coating process with the combination of radio frequency plasma enhanced chemical vapor deposition (RF PECVD) and DC magnetron sputtering at various substrate bias voltage and target sputtering power in the order of −400 V 200 W, −400 V 100 W, −800 V 200 W, and −800 V 100 W. The deposition rate, N/C atomic ratio, and hardness of CNx coatings as well as friction coefficient of CNx coating sliding against AISI 52100 pin in N2 gas stream decrease, while the residual stress of CNx coatings increases with the increase of substrate bias voltage and the decrease of target sputtering power. The highest hardness measured under single stiffness mode of 15.0 GPa and lowest residual stress of 3.7 GPa of CNx coatings are obtained at −400 V 200 W, whereas the lowest friction coefficient of 0.12 of CNx coatings is achieved at −800 V 100 W. Raman and XPS analysis suggest that sp3 carbon bonding decreases and sp2 carbon bonding increases with the variations in substrate bias voltage and target sputtering power. Optical images and Raman characterization of worn surfaces confirm that the friction behavior of CNx coatings is controlled by the directly sliding between CNx coating and steel pin. Therefore, the reduction of friction coefficient is attributed to the decrease of sp3 carbon bonding in the CNx coating. It is concluded that substrate bias voltage and target sputtering power are effective parameters for tailoring the structural and tribological properties of CNx coatings.  相似文献   

18.
TiAlBN coatings have been deposited by electron beam (EB) evaporation from a single TiAlBN material source onto AISI 316 stainless steel substrates at a temperature of 450 °C and substrate bias of − 100 V. The stoichiometry and nanostructure have been studied by X-ray photoelectron spectroscopy, X-ray diffraction and transmission electron microscopy. The hardness and elastic modulus were determined by nanoindentation. Five coatings have been deposited, three from hot-pressed TiAlBN material and two from hot isostatically pressed (HIPped) material. The coatings deposited from the hot-pressed material exhibited a nanocomposite nc-(Ti,Al)N/a-BN/a-(Ti,Al)B2 structure, the relative phase fraction being consistent with that predicted by the equilibrium Ti-B-N phase diagram. Nanoindentation hardness values were in the range of 22 to 32 GPa. Using the HIPped material, coating (Ti,Al)B0.29N0.46 was found to have a phase composition of 72-79 mol.% nc-(Ti,Al)(N,B)1 − x+ 21-28 mol.% amorphous titanium boride and a hardness of 32 GPa. The second coating, (Ti,Al)B0.66N0.25, was X-ray amorphous with a nitride+boride multiphase composition and a hardness of 26 GPa. The nanostructure and structure-property relationships of all coatings are discussed in detail. Comparisons are made between the single-EB coatings deposited in this work and previously deposited twin-EB coatings. Twin-EB deposition gives rise to lower adatom mobilities, leading to (111) (Ti,Al)N preferential orientation, smaller grain sizes, less dense coatings and lower hardnesses.  相似文献   

19.
Nanoparticles of lanthanum ferrite (LaFeO3) and calcium-doped LaFeO3 (La1xCaxFeO3, x = 0.05-0.20) with perovskite-type structure have been prepared in a reverse microemulsion. Perovskite powder could be obtained at 500 °C for 3 h. The prepared powders were characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) and UV-Vis absorption spectroscopy. The visible-light photocatalytic activity of the photocatalysts was tested with methylene blue as an objective decomposition substance using fluorescence light as a visible light resource. The results showed that partial substitution of La3+ in LaFeO3 with Ca2+ could decrease the crystalline size, enhance visible light absorption and improve visible light photocatalytic activity.  相似文献   

20.
M. Bedjaoui  B. Despax 《Thin solid films》2010,518(15):4142-4149
Films prepared by radiofrequency pulsed plasma enhanced chemical vapor deposition from a mixture of silane (SiH4) and nitrous oxide (N2O) were studied. Variation of operating conditions (flow rate, deposition temperature ...) resulted in films with chemical compositions changing from hydrogenated silicon oxynitride (SiOxNy:H) to silicon oxide (SiOx:H). Infrared and Rutherford backscattering spectroscopy studies of the as-deposited films revealed different SiOx arrangements disturbed by Si-N bonds and H-Si ≡ Si(3 − x)Ox clusters depending on the substrate temperature and the N2O/SiH4 ratio. For films obtained using low N2O/SiH4 rations and annealed at temperature higher than 1273 K, Raman spectroscopy and microscopy analyses revealed the presence of silicon nanocrystals embedded in a matrix containing Si, O, and N. Spectroscopic ellipsometry revealed the presence of silicon nanocrystals along with two other amorphous phases (SiOxNy and SiO2) in annealed samples. The electrical characteristics of annealed films obtained from capacitance-voltage measurements indicated a stable charge trapping in ultra-thin SiOxNy layers. These preliminary results suggest that Si-nc containing silicon oxynitride layers can be potential candidates to be used in the floating gate fabrication of memory devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号