首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnTe layers have been grown on a (111) oriented CdTe single crystal substrate by vacuum thermal evaporation technique. The growth temperature was 180 °C at a base pressure of 10− 4 N/m2. The as-grown samples were investigated by X-ray diffraction. The pattern indicated a highly oriented crystallographic growth of ZnTe (111) layer on CdTe (111) substrate. The current-voltage characteristics in both forward and reverse biasing were carried out in the temperature range from 300 down to 200 K. The dark forward current curves were definitely of the diode type in the forward direction. This behavior can be understood as the barrier at the interface limits forward and reverse carrier flow across the junction, where the built-in potential could be developed. Series resistance due to the neutral region was estimated at approximately 320 Ω and the activation energy of the carriers was calculated and found to be 0.11 ± 0.03 eV. The reverse current shows negative resistance behavior at low voltage range.  相似文献   

2.
Ö. Güllü  ?. Aydo?an  M. Biber  A. Türüt 《Vacuum》2008,82(11):1264-1268
The current-voltage (I-V), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristics of Al/phenolsulfonphthalein (PSP)/n-Si/AuSb structure were investigated at room temperature. A modified Norde's function combined with conventional forward I-V method was used to extract the parameters including barrier height and the series resistance. The barrier height and series resistance obtained from Norde's function were compared with those from Cheung functions, and it was seen that there was a good agreement between the barrier height values from both method. It was also seen that the values of capacitance were almost independent of frequency up to a certain value of frequency, whereas at high frequencies the capacitance decreased quickly. The higher values of capacitance at low frequencies were attributed to the excess capacitance resulting from the interface states in equilibrium with the n-Si that can follow the alternating current (a.c) signal.  相似文献   

3.
4.
K. Bourenane  A. Keffous 《Vacuum》2007,81(5):663-668
We investigated the electrical characteristics of two different Schottky diode as Pt/SiC and Pt/porous SiC, elaborated on highly resistif hot-pressed p-type 6H-SiC supplied by Goodfellow. The Schottky diode was characterized in air ambient and in vacuum, this latter could be used for exhaust gas monitoring as gas sensors for different gas (O2, H2, CO, CO2 and hydrocarbure). The result shows an ideality factor in range 1.1-1.5 with a barrier height varying between 0.780 and 0.950 eV function of the ambient characterization. The result indicated clearly the dependence of electrical parameters on the surface whose Schottky contact was realized (Pt) and on the ambient where the electrical tests were performed.  相似文献   

5.
We present in this paper the experimental results concerning the deposition of tin oxide SnO2 on silicon substrate by the technique of Atmospheric Pressure Chemical Vapour Deposition (APCVD). The obtained Si-SnO2 heterostructure is used for photovoltaic application. The properties of tin oxide thin films deposited by APCVD technique depends on three parameters which are the deposition temperature, the deposition time and the oxygen pressure. We have obtained the optimal value of each parameter by the measurement of the open-circuit voltage of the obtained Si-SnO2 heterostructure. So, at the temperature of 490 °C during 12 min of deposition time under oxygen pressure of 1 bar we have obtained tin oxide thin layers exhibiting the best optoelectronic and morphology characteristics. These thin films are polycrystalline and present a resistivity of 1.3 · 10− 3 Ω cm and a refractive index of 1.72. The Si-SnO2 heterojunction solar cell that has an area of 2 × 1.5 cm2 is characterised by the current-voltage I(V) measurement. It gives an open circuit voltage of 0.45 V and a short circuit current of 74 mA.  相似文献   

6.
Current-voltage relations at different magnetron sputtering systems and gas mixtures were studied during reactive sputter deposition of titanium dioxide thin films. The main goal of this work was to investigate the influence of reactive gas mixture (Ar + O2) and system geometry on the electrical characteristics of the discharge. The geometries utilized were the conventional magnetron sputtering, hollow cathode magnetron sputtering and triode magnetron sputtering. A change in the system geometry leads to a change in the electric field distribution, which alters the working range of the discharge voltage and magnetron efficiency. It is noticed that the discharge voltage at constant current can be reduced when the geometry is altered from conventional magnetron to hollow cathode magnetron or triode magnetron, at the same time the magnetron efficiency is increased when hollow cathode magnetron or triode magnetron are used instead of conventional magnetron sputtering.  相似文献   

7.
常压碱熔-水热法制备了银掺杂TiO2复合纳米管。氮吸附法测定其比表面积与原料相比,增加了2.3倍,达82m2/g。用XRD、TEM和XPS进行了表征。TiO2纳米管由锐钛矿相和金红石相组成,研究表明复合纳米管中银元素以金属银和氧化银状态共存。因长径比增大,其XRD衍射峰峰高和峰强均大幅度降低。UV-Vis吸收光谱显示,银掺杂TiO2复合纳米管的吸收光谱发生了红移,带边红移近40nm。这是因为在TiO2纳米管表面形成了肖特基结,TiO2禁带宽度之间形成了杂质能级,使其表观禁带宽度减小,有助于光生电子的迁移,减少电子-空穴复合;纳米管表面羟基氧(—OH)使其表面的酸性活性点增加,增强了价带中光生空穴的氧化能力。  相似文献   

8.
We have fabricated a poly(aniline-3-methyl thiophene) organic thin material on p-Si substrate by placing a solution of copolymer in acetonitrile on top of a p-Si substrate and then evaporating the solvent. The electrical and interface state density properties of the poly(aniline-3-methyl thiophene) copolymer/p-Si/Al diode have been investigated through methods using current-voltage (I-V), Cheung's, and a modified Norde's function. Good agreement was observed with the values of barrier height as obtained from all of these methods. The diode shows a non-ideal I-V behavior with an ideality factor greater than unity, which could be ascribed to the interfacial layer, interface states and series resistance. The interface state density of diode was determined using the forward-bias I-V characteristic technique at room temperature, and it decreases exponentially with bias from 1.39 × 1016 cm2 eV1 in (0.06 − Ev) eV to 4.86 × 1015 cm2 eV1 in (0.51 − Ev) eV.  相似文献   

9.
Wide optical bandgap p-type nanocrystalline silicon carbide (p-nc-SiC) films deposited by hot-wire chemical vapor deposition were used as window layers in n-type crystalline Si heterojunction (HJ) solar cells. The effect of H2 flow rates on the material properties of p-nc-SiC films was investigated by X-ray diffractometer and Raman spectroscopy. Moreover, the optical and electrical properties, such as optical bandgap (Eg), dark conductivity, and activation energy (Ea), of p-nc-SiC films were also measured. It was found that H2 flow rates played an important role in forming of p-nc-SiC films and increasing the Eg and decreasing the Ea of p-nc-SiC films. Moreover, the effect of hydrogenation process of the amorphous Si buffer layer on solar cell characteristics was investigated. After the deposition and hydrogenation parameters were optimized, the Si HJ solar cells with the open-circuit voltage of 0.59 V, short-circuit current density of 38.06 mA/cm2, fill factor of 62.03%, and the conversion efficiency of 14.09% could be obtained.  相似文献   

10.
The electrical and photoelectrical behaviour of Au/n-CdTe junctions prepared on CdTe monocrystalline substrates and CdTe epitaxial layers grown on n+ GaAs substrates were studied. The electrical and photoresponse properties depended very strongly on the parameters of the compensated high-resistive layer at the CdTe surface formed by annealing during preparation.  相似文献   

11.
In this paper we report the electrical characteristics of the Schottky diodes formed by surface polymerization of the Poly(ethylene glycol dimethacrylate-n-vinyl imidazole)/Single Walled Carbon Nanotubes on n-Si. The Single Walled Carbon Nanotubes were synthesized by CVD method. The main electrical properties of the Poly(ethylene glycol dimethacrylate-n-vinyl imidazole)/Single Walled Carbon Nanotubes/n-Si have been investigated through the barrier heights, the ideality factors and the impurity density distribution, by using current-voltage and reverse bias capacitance voltage characteristics. Electrical measurements were carried out at room temperature. Poly(ethylene glycol dimethacrylate-n-vinyl imidazole)/Single Walled Carbon Nanotubes/n-Si Schottky diode current-voltage characteristics display low reverse-bias leakage currents and average barrier heights of 0.61 ± 0.02 eV and 0.72 ± 0.02 eV obtained from both current-voltage and capacitance-voltage measurements at room temperature, respectively.  相似文献   

12.
?. Karata? 《Vacuum》2004,74(1):45-53
Analysis of Zn/p-Si Schottky diodes (SDs) with high resistivity has been given by admittance spectroscopy. The importance of the series resistance in the determination of energy distribution of interface states and especially their relaxation time in the SDs with high resistivity has been considered. The effect of the series resistance on capacitance-conductance/frequency characteristics has been given by comparing experimental data with theoretical data. The interface state density Nss from the admittance spectroscopy ranges from 1.0×1012 cm−2 eV−1 in 0.720-Ev eV to 2.03×1012 cm−2 eV−1 in 0.420-Ev eV. Furthermore, the relaxation time ranges from 4.20×10−5 s in (0.420-Ev) eV to 3.20×10−4 s in (0.720-Ev) eV. It has been seen that the interface state density has a very small distribution range (1.0-2.03×1012 cm−2 eV−1) that is ascribed to the predominant termination with hydrogen of the silicon surface after HF treatment.  相似文献   

13.
The influence of oxygen and annealing in the presence of CdCl2 on the photoluminescence (PL) spectra of CdTe, component of SnO2/CdTe heterojunction (HJ), has been studied in a temperature range of 17-100 K. The changes in the photoluminescence spectra were studied as a function of excitation intensity. Analysis of the PL spectra was carried out with considerations of spectra obtained from CdS/CdTe heterojunctions. CdTe side PL (SnO2/CdTe HJ) consisted of 1.450 eV-DA defect band and 1.243 eV band (17 K). Annealing resulted in the disappearance of 1.243 eV band in oxygen containing samples. Interface PL for the unannealed samples consisted of mainly the 1.264 eV and a trace of the defect band. The CdCl2 treatment is responsible for an almost symmetrical 1.416 eV band.  相似文献   

14.
基于p+-Si与n-ZnO纳米线的p-n异质结的制备及其性质研究   总被引:1,自引:0,他引:1  
利用CVD蒸汽俘获法,在p^+硅片上制备了垂直生长的n型ZnO纳米线阵列,用XRD和SEM分析了样品的结构与形貌。测试发现样品的I-V曲线符合典型的p-n异质结特性,正向开启电压为0.5V,反向饱和电流为0.02mA。计算了异质结的理想因子η,发现当异质结两端偏压在0V-0.3V的低压区域,理想因子为1.85,而在0.3v-0.8v的高偏压区域,理想因子为8.36。解释了理想因子偏高的原因是由于金属一半导体接触以及ZnO纳米线与p^+-si界而存在缺陷。  相似文献   

15.
Electrically conductive polyaniline/sulfonated poly(arylene ether sulfone) (PANI/BPS-35) composites were prepared. The influence of humidity and temperature on electrical conductivity of 20 wt% polyaniline containing composite films was tested. The conductivity increment from 17 mS/cm to 44 mS/cm was observed when the temperature increased from 24 °C to 80 °C at 50% relative humidity (RH). The maximum conductivity was 53 mS/cm at 80 °C and 70% RH. Aluminum (Al) and gold (Au) contacts were deposited onto PANI/BPS composite films and their contact properties have been investigated. While Al contacts behave like Schottky type contact, Au contacts showed nearly ohmic characterization. Scanning electron microscopy technology was used to investigate the morphology of PANI/BPS-35 composite films.  相似文献   

16.
Crystalline ceria (CeO2) nanoparticles have been successfully synthesized by a microwave-assisted solution method. Polyaniline (PANI)/cerium dioxide (CeO2) nanocomposite was synthesized by in situ polymerization of aniline in the presence of CeO2 nanoparticles. Characterization of CeO2 and PANI/CeO2 nanomaterials are carried out using various studies such as powder X-ray diffraction, infrared spectral and UV–Vis absorption spectral analyses, scanning electron microscopic and high-resolution transmission electron microscopic (HRTEM) studies and thermal analysis. The HRTEM of the images indicate that the CeO2 nanoparticles were embedded in the PANI matrix forming the core–shell structure.  相似文献   

17.
Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to prepare polymer brushes grafted onto silicon wafer surface. Novel RAFT agent was prepared and immobilized on the silicon wafer surface. RAFT polymerizations were then conducted from the silicon surface to graft polymer brush to the silicon. Analysis of the polymer brush layers was conducted using ellipsometry, XPS, AFM and contact angle measurements, respectively.  相似文献   

18.
《功能材料》2012,43(8)
常压碱熔-水热法制备了银掺杂TiO2复合纳米管。氮吸附法测定其比表面积与原料相比,增加了2.3倍,达82m2/g。用XRD、TEM和XPS进行了表征。TiO2纳米管由锐钛矿相和金红石相组成,研究表明复合纳米管中银元素以金属银和氧化银状态共存。因长径比增大,其XRD衍射峰峰高和峰强均大幅度降低。UV-Vis吸收光谱显示,银掺杂TiO2复合纳米管的吸收光谱发生了红移,带边红移近40nm。这是因为在TiO2纳米管表面形成了肖特基结,TiO2禁带宽度之间形成了杂质能级,使其表观禁带宽度减小,有助于光生电子的迁移,减少电子-空穴复合;纳米管表面羟基氧(—OH)使其表面的酸性活性点增加,增强了价带中光生空穴的氧化能力。  相似文献   

19.
邵亮  冯洁  李强德 《功能材料》2013,(20):3040-3044
使用硅烷偶联剂苯胺甲基三乙氧基硅烷(AMTES)改性凹凸棒粘土(ATP),制备了表面具有自组装单片层的SAM-ATP,并以其为模板,制备了结构较为均一的SAM-ATP/PANI纳米纤维。对制备工艺中SAM-ATP的用量进行了探讨,研究表明,当SAM-ATP含量为15.4%(质量分数)时,SAM-ATP/PANI纳米纤维结构较为均一、分散性良好,且具有最好的室温电导率2.3×10-4S/cm,使用紫外-可见分光光度计(UV-Vis)对电导率的变化原因进行了分析,使用热重分析仪(TGA)对材料的热稳定性进行了探讨,研究显示SAM-ATP的引入可有效提高PANI热稳定性。使用傅立叶变换红外分光光度计(FT-IR)和透射电子显微镜(TEM)对SAM-ATP/PANI纳米复合材料的结构和形貌进行了表征。  相似文献   

20.
张金艳  林生岭  程小芳  郑海洋 《功能材料》2012,43(11):1498-1502
以ITO导电玻璃为工作电极,在三电极系统中,采用循环伏安法制得聚苯胺薄膜,聚苯胺/铁氰化铜(CuHCF),聚苯胺/铁氰化钴(CoHCF),聚苯胺/铁氰化铈(CeHCF)复合材料。通过利用C-V、SEM、EDS、XRD、FT-IR等方法对导电复合物进行表征和性能研究。实验结果表明,制备复合物的最佳电解液浓度为0.02mol/L苯胺+0.002mol/L金属离子+0.01mol/L铁氰化钾+0.5mol/L H2SO4;聚苯胺与铁氰化物很好地键合在一起,聚苯胺/铁氰化钴复合材料的电化学性有进一步的提高,具有纳米粒子特性和独特的片状粒子结构;而聚苯胺/铁氰化铜和聚苯胺/铁氰化铈的电化学性能高于聚苯胺本体,粒子间有较大的空穴现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号