首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Single-crystalline fibers were grown from 0.25, 0.70, and 1.50 mol% Pr-doped Lu3Al5O12 (LuAG) melts by the micro-pulling down (μ-PD) method with a diameter of 0.3-0.5 mm and a length of about 200 mm. They were cut to 10 mm long specimens, and their scintillation properties, including light yield and decay time profile, were examined. These results were compared with corresponding properties of the specimens (0.8×0.8×10 mm3) cut from the bulk crystals produced by conventional Czochralski (CZ) growth. The μ-PD-grown fibers demonstrated relatively low light yield and had the same decay time constant when compared with those of the samples cut from the CZ-grown crystals. The fiber crystals were used to assemble scintillating arrays with dimensions of Ø 0.5×10 mm2×20 pixels and Ø 0.3×10 mm2×30 pixels coated by a BaSO4 reflector. After optical coupling with a position sensitive photomultiplier tube, the fiber-based arrays demonstrated acceptable imaging capability with a spatial resolution of about 0.5 mm.  相似文献   

2.
The crystals of 1 mol% Ce-doped LuLiF4 (Ce:LLF) grown by the micro-pulling down (μ-PD) method and 1 mol% Ce-doped LuScBO3 (Ce:LSBO) grown by the conventional Czochralski (Cz) method were examined for their scintillation properties. Ce:LLF and Ce:LSBO demonstrated ∼80% transparency at wavelengths longer than 300 and 400 nm, respectively. When excited by 241Am α-ray to obtain radioactive luminescence spectra, Ce3+ 5d-4f emission peaks were detected at around 320 nm for Ce:LLF and at around 380 nm for Ce:LSBO. In Ce:LSBO, the host luminescence was also observed at 260 nm. By recording pulse height spectra under γ-ray irradiation, the absolute light yield of Ce:LLF and Ce:LSBO was measured to be 3600±400 and 4200±400 ph/MeV, respectively. Decay time kinetics was also investigated using a pulse X-ray equipped streak camera system. The main component of Ce:LLF was ∼320 ns and that of Ce:LSBO was ∼31 ns. In addition, the light yield non-proportionality and energy resolution against the γ-ray energy were evaluated.  相似文献   

3.
We report a spectroscopic characterisation of MoO3, WO3 and a MoO3-WO3 mixed oxide thin films deposited on alumina and silicon substrates. Absorbance FT-IR and diffuse reflectance UV-Vis-NIR spectra were recorded after treatments in vacuum and after interaction with O2, NO2/O2, CO/O2 or pure CO at increasing temperatures up to 673 K. For all the films, reducing treatments (vacuum, CO or CO/O2) cause the increase of a variety of broad absorptions both in the Vis-NIR and medium IR regions. These absorptions decrease in intensity after contact with oxidising atmospheres (O2 or NO2/O2), so that they are all assignable to electronic transitions due to the presence of a variety of donor levels related to oxygen defects.  相似文献   

4.
C Amory  J.C Bernède 《Vacuum》2004,72(4):351-361
Textured MoTe2 films have been prepared by sequential evaporation of the constituents followed by annealing under a tellurium pressure. The films are systematically textured with the c-axis of the crystallites perpendicular to the plane of substrate, however, the film composition is difficult to control and even after process optimization the films are tellurium deficient. This is thought to be caused by the electro negativity difference of the constituents.The textured MoTe2 films have been used as substrates on which to grow MoS2 films by annealing under a pressure of sulfur that allows textured MoS2 films to be grown with good crystalline properties. The presence of sulfur at the surface and annealing under dynamic vacuum is important for this process and moreover, suppresses the superficial oxidation of the Mo and Te constituents.  相似文献   

5.
Epitaxial thin films of a heterostructure with Bi4Ti3O12(BIT)/SrTiO3(ST) were successfully grown with a bottom electrode consisting of La0.5Sr0.5CoO3(LSCO) on MgO(001) substrates using pulsed laser deposition. The grown BIT and ST (001) planes were parallel to the growth surface with the orientation relationship of BIT <110>//ST <010>. In the as-deposited film, the BIT (001) plane appeared to expand to relieve a lattice mismatch with the ST (001) plane. However, annealing for 20-40 min induced the BIT (001) plane to contract horizontally with its c-axis expanding, which was associated with a local perturbation in the layer stacking of the BIT structure. This structural distortion was reduced in the film annealed for 1 h, with restoration of the periodicity of the layer stacking. Correspondingly, the dielectric constant of the as-deposited film was increased from 292 to 411 by annealing for 1 h. In parallel, the film was paraelectric but became more ferroelectric, with the remanent polarization and the coercive field changing from 0.1 μC/cm2 and 14 kV/cm to 1.7 μC/cm2 and 69 kV/cm, respectively.  相似文献   

6.
We report on observations of structural stability of Sn-doped In2O3 (ITO) thin films during thermal annealing at low temperature. The ITO thin films were deposited by radio-frequency magnetron sputtering at room temperature. Transmission electron microscopy analysis revealed that the as-deposited ITO thin films are nanocrystalline. After thermal annealing in a He atmosphere at 250 °C for 30 min, recrystallization, coalescence, and agglomeration of grains were observed. We further found that nanovoids formed in the annealed ITO thin films. The majority of the nanovoids are distributed along the locations of the original grain boundaries. These nanovoids divide the agglomerated larger grains into small coherent domains.  相似文献   

7.
Multi-stage evaporation is a well-established method for the controlled growth of chalcopyrite thin films. To apply this technique to the deposition of Cu2ZnSnS4 thin films we investigated two different stage sequences: (A) using Cu2SnS3 as precursor to react with Zn-S and (B) using ZnS as precursor to react with Cu-Sn-S. Both Cu2SnS3 and ZnS are structurally related to Cu2ZnSnS4. In case (A) the formation of copper tin sulphide in the first stage was realized by depositing Mo/SnSx/CuS (1 < x < 2) and subsequent annealing. In the second stage ZnS was evaporated in excess at different substrate temperatures. We assign a significant drop of ZnS incorporation at elevated temperatures to a decrease of ZnS surface adhesion, which indicates a self-limited process with solely reactive adsorption of ZnS at high temperatures. In case (B) firstly ZnS was deposited at a substrate temperature of 150 °C. In the second stage Cu, Sn and S were evaporated simultaneously at varying substrate temperatures. At temperatures above 400 °C we find a strong decrease of Sn-incorporation and also a Zn-loss in the layers. The re-evaporation of elemental Zn has to be assumed. XRD measurements after KCN-etch on the layers prepared at 380 °C show for both sample types clearly kesterite, though an additional share of ZnS and Cu2SnS3 can not be excluded. SEM micrographs reveal that films of sample type B are denser and have larger crystallites than for sample type A, where the porous morphology of the tin sulphide precursor is still observable. Solar cells of these absorbers reached conversion efficiencies of 1.1% and open circuit voltages of up to 500 mV.  相似文献   

8.
A new technique to produce microscale Ti3O5 nano- and microfiber meshes is proposed. When a 3 wt% carbon-doped TiO2 film on Si(1 0 0) was annealed at 1000 °C in wet nitrogen (0.8%H2O), the amorphous TiO2 phase gave rise to crystalline phases of λ-Ti3O5 (75%) and rutile + trace of TiO2−xCx (25%). From Raman and FTIR Spectroscopy results, it was concluded that rutile is formed at the inner layer located at the interface between the mesh and the Si that was located away from the surface such that the meshes of nano- and microfibers are predominantly composed of Ti3O5 grown from the reaction of rutile with Si to form Ti3O5 and SiO2. On the other hand, it was noteworthy that the microscale mesh of nano- and microfibers showed increased photoluminescence compared with amorphous TiO2. The PL spectrum which had a broad band in the visible spectrum, fitted as three broad Gaussian distributions centered at 571.6 nm (∼2.2 eV), 623.0 nm (∼2.0 eV) and 661.9 nm (∼1.9 eV).  相似文献   

9.
Xue-Yang 《Thin solid films》2010,518(22):6441-6445
In this study, the etching characteristics of ALD deposited Al2O3 thin film in a BCl3/N2 plasma were investigated. The experiments were performed by comparing the etch rates and the selectivity of Al2O3 over SiO2 as functions of the input plasma parameters, such as the gas mixing ratio, the DC-bias voltage, the RF power, and the process pressure. The maximum etch rate was obtained at 155.8 nm/min under a 15 mTorr process pressure, 700 W of RF power, and a BCl3 (6 sccm)/N2 (14 sccm) plasma. The highest etch selectivity was 1.9. We used X-ray photoelectron spectroscopy (XPS) to investigate the chemical reactions on the etched surface. Auger electron spectroscopy (AES) was used for the elemental analysis of the etched surfaces.  相似文献   

10.
In this study, we monitored the HfAlO3 etch rate and selectivity to SiO2 as a function of the etch parameters (gas mixing ratio, RF power, DC-bias voltage, and process pressure). A maximum etch rate of 52.6 nm/min was achieved in the 30% BCl3/(BCl3 + Ar) plasma. The etch selectivity of HfAlO3 to SiO2 reached 1.4. As the RF power and the DC-bias voltage increased, the etch rate of the HfAlO3 thin film increased. As the process pressure decreased, the etch rate of the HfAlO3 thin films increased. The chemical state of the etched surfaces was investigated by X-ray Photoelectron Spectroscopy (XPS). According to the results, the etching of HfAlO3 thin films follows the ion-assisted chemical etching mechanism.  相似文献   

11.
Crystallization temperature of nitrogen-doped Sb2Te3 (ST) thin films increased with increasing nitrogen doping concentration, which indicates that the long-term stability of the metastable amorphous state can be improved by nitrogen doping. The root-mean-square (rms) roughness values of the films showed a significant decrease with nitrogen doping. Thermal conductivity of nitrogen-doped ST thin films was measured using a transient thermoreflectance (TTR) technique. It was found that the thermal conductivity decreased with increasing nitrogen doping concentration and increased with increasing annealing temperature. Nitrogen-doped ST thin films are suitable phase-change materials for low programming power consumption applications of phase-change random access memory (PCRAM).  相似文献   

12.
A full study of the BaTiO3-CuO thin-film technology properties as carbon dioxide sensing material is presented. The coatings are deposited by RF-Sputtering and the CO2 concentration is monitored by impedance measurements. Theoretical foundations are correlated to the experimental results and the principal fabrication and operation parameters are clarified: working temperature and frequency, thickness influence and the introduction of silver as an additive. The BaTiO3-CuO layer shows higher sensitivity than the actual low-cost commercial CO2 sensors in the range of the principal applications.  相似文献   

13.
The direct measurement of the thermo-optic coefficients of aluminium oxide, tantalum pentoxide and titanium dioxide thin films is presented. Using ellipsometry on monolithically integrated permutations of the layers of silicon, silicon dioxide and the material under test, allows the direct measurement of the overall thermo-optic coefficient accounting for thermally induced changes in the dielectric permittivity and density of the materials as well as the elasto-optic effect due to the non-matching thermal expansion coefficients of the different materials.  相似文献   

14.
The investigation of Al2O3 etch characteristics in the BCl3/Ar inductively coupled plasma was carried out in terms of effects of input process parameters (gas pressure, input power, bias power) on etch rate and etch selectivity over poly-Si and photoresist. It was found that, with the changes in gas pressure and input power, the Al2O3 etch rate follows the behavior of ion current density while the process rate is noticeably contributed by the chemical etch pathway. The influence of input power on the etch threshold may be connected with the concurrence of chemical and physical etch pathways in ion-assisted chemical reaction.  相似文献   

15.
C.K. Tan 《Thin solid films》2007,515(16):6572-6576
Polycrystalline BaTiO3 thin films were grown solvothermally on Ti-covered substrates in ethanol, distilled water and 1,4-butanediol at 80 °C, 150 °C and 200 °C. Films grown in organic media are finer grained and required more stringent crystallization conditions due to lower solubility of constituent ions. Solvothermal films exhibit less severe proton incorporation. Solvothermal films grown close to the boundary crystallization conditions tend to have higher frequency dispersion and loss tangents. Dielectric properties of BaTiO3 films grown in ethanol are comparable to that of hydrothermal films. Butanediol-derived films have lower dielectric constants than the aqueous equivalent.  相似文献   

16.
Ca3Co4O9 thin films are deposited on Al2O3(001) substrates using a sol-gel spin-coating process. X-ray diffraction shows that the film exhibits a single phase of Ca3Co4O9 with the (00l) planes parallel to the film surface. The temperature dependence of magnetic susceptibility showed as expected the existence of two magnetic transitions similar to those observed in bulk samples: a ferrimagnetic and a spin-state transition around 19 and 375 K, respectively. At 5 K the magnetization curves along the c-axis of the Al2O3(001) show that the remanent magnetization and coercive field are close to those obtained for films grown by pulsed laser deposition, which evidences the interest to use such an easy technique to grow complex thin films oxides.  相似文献   

17.
Al2O3-ZrO2 composite films were fabricated on Si by ultrahigh vacuum electron-beam coevaporation. The crystallization temperature, surface morphology, structural characteristics and electrical properties of the annealed films are investigated. Our results indicate that the amorphous and mixed structure is maintained up to an annealing temperature of 900 °C, which is much higher than that of pure ZrO2 film, and the interfacial oxide layer thickness does not increase after annealing at 900 °C. However, a portion of the Al2O3-ZrO2 film becomes polycrystalline after 1000 °C annealing and interfacial broadening is observed. Possible explanations are given to explain our observations. A dielectric constant of 20.1 is calculated from the 900 °C-annealed ZrO2-Al2O3 film based on high-frequency capacitance-voltage measurements. This dielectric characteristic shows an equivalent oxide thickness (EOT) as low as 1.94 nm. An extremely low leakage current density of ∼2×10−7 A/cm2 at a gate voltage of 1 V and low interface state density are also observed in the dielectric film.  相似文献   

18.
We have demonstrated the structural and morphological changes of iridium oxide (IrO2) films by the thermal annealing process. We have characterized the samples by using the X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The Ir-related XRD peaks predominantly appeared after the thermal annealing at 750-1000 °C. SEM images revealed that the films became quite uneven in thickness by annealing at 750 °C, whereas island-like structures were found to agglomerate on substrate surfaces by annealing at 1000 °C. From EDX and XRD analysis, we suggested that the agglomerated structures mainly consisted of Ir phase.  相似文献   

19.
Min-Young Kim 《Thin solid films》2010,518(22):6550-6553
Crystallization behavior of the electrodeposited Sb2Te3 film was characterized and the effect of the amorphous-crystalline transition on the Seebeck coefficient was evaluated. The as-electrodeposited Sb2Te3 film was amorphous and exhibited the Seebeck coefficient of 268-322 μV/K, which was much larger than the value of the crystalline Sb2Te3 film. When annealed at temperatures above 100 °C, the Seebeck coefficient of the Sb2Te3 film dropped significantly to 78-107 μV/K due to the amorphous-crystalline transition at 94 °C. The thermal stability of the electrodeposited Sb2Te3 film was improved by the addition of Cu, and the crystallization temperature of the CuSbTe film increased up to 149.5 °C.  相似文献   

20.
This work reports on the synthesis and the structural and optical characterization of beta barium borate (β-BBO) thin films containing 4, 8 and 16 mol% of titanium oxide (TiO2) deposited on fused silica and silicon (0 0 1) substrates using the polymeric precursor method. The thin films were characterized by X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy techniques. The optical transmission spectra of the thin films were measured over a wavelength range of 800-200 nm. A decrease was observed in the band gap energy as the TiO2 content was raised to 16 mol%. Only the β-BBO phase with a preferential orientation in the (0 0 l) direction was obtained in the sample containing 4 mol% of TiO2 and crystallized at 650 °C for 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号