共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal annealing of [Fe 1.65 nm/Pt 1.84 nm]50 multilayers at 673 K for various annealing times between 60 and 12000 s leads to the direct formation of the fully ordered L10 FePt phase with (111) texture. The average grain sizes, determined from X-ray diffraction size-strain analysis, are smaller than the critical size for multi-domain FePt particles, suggesting the presence of single-domain (SD) grains. The coercivity increases with annealing time and increasing grain size and reaches values of about 955 kA/m. The remanence values are typical for randomly oriented weakly-interacting particles. A decrease of the remanence with annealing time suggests a decrease of the intergrain exchange interactions with annealing time. Analysis of minor loops and the initial magnetization curves shows the presence of a broad distribution of critical fields, which the individual SD particles have to overcome for the magnetization reversal. 相似文献
2.
We report the low temperature noncollinear magnetic behavior of direct current (DC) sputtered FePt thin films investigated by performing DC magnetization, thermoremanence, magnetic relaxation, and electrical transport measurements down to 1.8 K. The obtained results, interestingly, indicate a transition from ferromagnetic state to a low temperature disordered state where a collective frozen magnetic state with grain moments oriented randomly occurs. The magnetic relaxation and electrical resistivity measurements at low temperature support the spin-glass like phase, which diminishes and finally disappears with an applied field of moderate strength. We interpret the observed low temperature noncollinear magnetic behavior to be due to random freezing of grain moments. 相似文献
3.
The FePt/Ag core-shell nanoparticles with different Ag shell thickness have been fabricated using a seed mediated technique. The core-shell nanoparticles are annealed at temperatures ranging from 350 to 600 °C for 30 min in vacuum. The magnetic measurement demonstrates that the FePt/Ag core-shell nanoparticles show a better chemical ordering tendency with a magnetic hardening temperature of 400–450 °C, which is almost 100 °C lower than that of pure FePt nanoparticles. Negative peaks on the δM curves of the annealed FePt/Ag core-shell nanoparticles demonstrate that the predominant interparticle interactions are dipolar type rather than exchange coupling one. Besides, the FePt/Ag core-shell nanoparticles show both sensitive plasmonic and superparamagnetic properties. The present results indicate that our composite nanoparticles are very promising from the viewpoint of the optoelectronics and biomedical applications. 相似文献
4.
Indium tin oxide (ITO) thin films have been grown onto glass substrates by sputtering at room temperature with various controlled oxygen and argon ratios used as reactive and sputter gases, respectively. After deposition, the samples have been annealed at 350 °C in the same sputtering chamber in vacuum or in air. The structure, morphology and electro-optical characteristics of the ITO coatings have been analyzed as a function of the oxygen added during deposition and of the annealing atmosphere by X-ray diffraction, atomic force microscopy, four points electrical measurements and spectrophotometry. It has been found that the as-deposited amorphous samples crystallize in the cubic structure by annealing. The optical transmittance and the electrical resistance decrease when the oxygen content in the deposition and the annealing atmosphere is reduced. 相似文献
5.
The perpendicular anisotropic magnetic properties of in-situ deposited FePt/Pt/Cr trilayer films were elucidated as functions of the deposition temperature and the sputtering rate of the FePt magnetic layer. Ordered L10 FePt thin films with perpendicular anisotropy and a (001) texture can be developed at a temperature as low as 300 °C with the sputtering of a FePt layer at a low rate. The larger Pt(001)[100] lattice induced an expansion of the FePt a- and b-axis, leading to the contraction of the FePt c-axis, enabling the epitaxial growth of the L10 FePt(001) texture to occur. A low rate of sputtering of the FePt thin film promotes the formation of the magnetically hard FePt(001) texture on the surface of the Pt(001) buffer layer at low temperature, while the high sputtering rate of FePt layer suppresses the phase transformation. 相似文献
6.
Well-crystallized tin oxide films were successfully synthesized without additional heating by inductively coupled plasma assisted chemical vapor deposition (ICP-CVD). The degree of crystallization was affected by the ICP power and hydrogen flow rate. The substrate temperature was increased only up to 423-453 K by plasma heating, which suggests that the formation of the SnO2 crystals was not caused by plasma heating, but by enhanced reactivity of precursors in high density plasma. The micro-hardness of deposited tin oxide films ranged from 5.5 to 11 GPa at different hydrogen flow rates. 相似文献
7.
Influence of annealing temperature on the properties of ZnO:Zr films deposited by direct current magnetron sputtering 总被引:1,自引:0,他引:1
Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) films were deposited on quartz substrates by direct current (DC) magnetron sputtering at room temperature. The influence of post-annealing temperature on the structural, morphological, electrical and optical properties of ZnO:Zr films were investigated. When annealing temperature increases from room temperature to 573 K, the resistivity decreases obviously due to an improvement of the crystallinity. However, with further increase in annealing temperature, the crystallinity deteriorates leading to an increase in resistivity. The films annealed at the optimum annealing temperature of 573 K in vacuum have the lowest resistivity of 9.8 × 10−4 Ω cm and a high transmittance of above 92% in the visible range. 相似文献
8.
The FePt films with various thicknesses (t) of 5 to 50 nm are deposited on Si(100) substrate without any underlayer by in-situ annealing at substrate temperature (Ts) of 620 °C. A strong (001) texture of L10 FePt film is obtained and presents high perpendicular magnetic anisotropy as the film thickness increases to 30 nm. By further increasing the thickness to exceed 30 nm, the (111) orientation of L10 FePt is enhanced greatly, indicating that the quality of perpendicular magnetic anisotropy degrades when the thickness of the FePt film is greater than 30 nm. The single-layered FePt film with thickness of 30 nm by in-situ depositing at 620 °C shows good perpendicular magnetic properties (perpendicular coercivity of 1033 kA/m (13 kOe), saturation magnetization of 1.08 webers/m2 and perpendicular squareness of 0.91, respectively), which reveal its significant potential for perpendicular magnetic recording media. 相似文献
9.
Low temperature annealing effects on the structure and optical properties of ZnO films grown by pulsed laser deposition 总被引:1,自引:0,他引:1
ZnO thin films were deposited on glass substrates at room temperature (RT) ∼500 °C by pulsed laser deposition (PLD) technique and then were annealed at 150-450 °C in air. The effects of annealing temperature on the microstructure and optical properties of the thin films deposited at each substrate temperature were investigated by XRD, SEM, transmittance spectra, and photoluminescence (PL). The results showed that the c-axis orientation of ZnO thin films was not destroyed by annealing treatments; the grain size increased and stress relaxed for the films deposited at 200-500 °C, and thin films densified for the films deposited at RT with increasing annealing temperature. The transmittance spectra indicated that Eg of thin films showed a decreased trend with annealing temperature. From the PL measurements, there was a general trend, that is UV emission enhanced with lower annealing temperature and disappeared at higher annealing temperature for the films deposited at 200-500 °C; no UV emission was observed for the films deposited at RT regardless of annealing treatment. Improvement of grain size and stoichiometric ratio with annealing temperature can be attributed to the enhancement of UV emission, but the adsorbed oxygen species on the surface and grain boundary of films are thought to contribute the annihilation of UV emission. It seems that annealing at lower temperature in air is an effective method to improve the UV emission for thin films deposited on glass substrate at substrate temperature above RT. 相似文献
10.
11.
In the present study, 57FePt films are prepared with reactive ion beam sputtering using mixture of argon and nitrogen gases. Energy-dispersive X-ray reflectivity is used to estimate the thickness of the as-deposited films. Structural and magnetic properties of the as-deposited and annealed films are studied using grazing incidence X-ray diffraction (GIXRD), magneto-optical Kerr effect (MOKE) and conversion electron Mossbauer spectroscopy (CEMS). Significant difference in structural and magnetic properties i.e., formation of ordered L10 phase and perpendicular magnetic anisotropy are observed for the films prepared with mixture of nitrogen and argon as compared to the film prepared with argon only. From the GIXRD, peaks corresponding to the ordered face-centred tetragonal FePt phase are observed for the films prepared with mixture gas. The results of CEMS clearly show the perpendicular magnetic anisotropy (PMA) for the films prepared with mixture of nitrogen and argon. The observed enhanced chemical ordering and the development of PMA in the films prepared with mixture gas is due to the role played by the defects created as a consequence of nitrogen escape in the films with high temperature annealing. 相似文献
12.
Yinqiao Peng Jicheng Zhou Baoxing ZhaoXiaochao Tan Zhichao Zhang 《Thin solid films》2011,519(7):2083-2086
Silicon carbonitride (SiCN) films were prepared by means of reactive magnetron sputtering of a sintered SiC target on n-type Si (1 0 0) substrates in the reactant gas of nitrogen, and then the films were respectively annealed at 600, 800 and 1100 °C for 5 min in nitrogen ambient. The films were characterized by energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy and photoluminescence (PL) spectrophotometry. Intense PL peaks at 370, 400 and 440 nm were observed at room temperature. The results show that annealing temperature and composition play an important role in the structures and PL properties of the films. The annealing temperature of 600 °C favors the formation of the SiC (1 0 9) crystal in the SiCN films, and results in a maximal PL peak. The intensity of the 440 nm PL peak can be improved by increasing the abundance of the Si-C bond. 相似文献
13.
Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs 总被引:1,自引:0,他引:1
This work shows the effect of the annealing temperature and atmosphere on the properties of r.f. magnetron sputtered indium-zinc oxide (IZO) thin-films of two types: one a conductive film (as-deposited, room temperature) that exhibits a resistivity of 3.5 × 10− 4 Ω cm; the other, a semiconductor film with a resistivity ∼ 102 Ω cm. The annealing temperatures were changed between 125 and 500 °C. Crystallization of the more conductive films was already noticeable at temperatures around 400 °C. Three different annealing atmospheres were used — vacuum, air and oxygen. For the conductive films, only the oxygen atmosphere was critical, leading to an increase of the electrical resistivity of more than one order of magnitude, for temperatures of 250 °C and above. Concerning the semiconductor films, both temperature and atmosphere had a strong effect on the film's properties, and the resistivity of the annealed films was always considerably smaller than the as-deposited films. Finally, some results of the application of these films to transparent TFTs are shown. 相似文献
14.
The effect of deposition parameters and post treatment on the electrical properties of Mo thin films
In this study, we deposited low-resistivity molybdenum (Mo) thin films on soda-lime glass substrates with good adhesion. We adjusted various deposition parameters such as the sputtering power (52-102 W), working distance (5.5-9 cm) and annealing temperature (26-400 °C) to investigate their impact on the sheet resistance. By using a DC magnetron sputtering system, we obtained Mo thin films having the lowest sheet resistance of 0.190 Ω/□ with a sputtering power of 82 W, working distance of 6.5 cm, and annealing temperature of 400 °C; in addition, these films had good adhesivity. These Mo thin films were suitable for use as the Mo back contact in Cu(In,Ga)Se2-based solar cells. 相似文献
15.
《Vacuum》2013
Ultra-thin Au films sputtered on glass substrates were investigated. The samples were annealed in air and in an evacuated chamber. The dependence of the annealing process on ambient pressure during thermal treatment was studied. The thermally-induced changes in surface morphology were followed by atomic force microscopy. The changes have a great impact on dielectric, optical and physical properties of the prepared structures. UV–Vis absorption spectra were used to investigate optical parameters and showed the semiconducting characteristic of intrinsic Au clusters. It was found that reduced ambient pressure stabilizes the continuous structure of the thin gold film during the annealing process. 相似文献
16.
Granular (FePt)100−x-(NiO)x nanocomposite thin films with x = 0 − 42 vol% were fabricated on a natural-oxidized Si(100) substrate. It is found that both the coercivity and FePt domain size decrease with increasing NiO content for the (FePt)100−x-(NiO)x films. When the FePt-NiO composite film with NiO content of 10.4 vol% is post-annealed at 750 °C with a high heating ramp rate of 100 °C/s, the in-plane coercivity (Hc//) and perpendicular coercivity (Hc⊥) of the FePt films are 513 and 430 kA/m, respectively. On the other hand, we used conductive atomic force microscope (CAFM) to confirm that the NiO compound is distributed at boundary of FePt particles that will constrain the domain size of FePt and decrease the exchange coupling interactions between FePt magnetic particles. 相似文献
17.
不同退火时间对[Ag/FePt]_(10)多层膜磁性能和微结构的影响 总被引:1,自引:1,他引:1
采用射频磁控溅射的方法,在玻璃基片上制备了不同Ag层厚度的[Ag/FePt 2nm]10多层薄膜,经550℃真空热处理后,得到L10有序结构的FePt薄膜.实验结果显示,FePt单层薄膜经550℃退火30min后其易磁化轴处于垂直方向和面内方向之间,而550℃退火60min后其易磁化轴处于垂直于膜面方向,垂直矫顽力和面内矫顽力分别为634和302kA/m;真空退火后[Ag/FePt]10多层膜表现为面内磁晶各向异性,550℃退火60min后[Ag 2.8nm/FePt 2nm]10多层薄膜垂直矫顽力和面内矫顽力分别为309和778kA/m,并且随着Ag层的加入,部分FePt颗粒已经被Ag原子隔开了,颗粒之间的交换耦合作用变弱了. 相似文献
18.
Y.R. SuiB. Yao L. XiaoL.L. Yang Y.Q. LiuF.X. Li M. GaoG.Z. Xing S. LiJ.H. Yang 《Thin solid films》2012,520(18):5914-5917
The B-N codoped p-type ZnO thin films have been prepared by radio frequency magnetron sputtering using a mixture of nitrogen and oxygen as sputtering gas. The effect of annealing temperature on the structural, electrical and optical properties of B-N codoped films was investigated by using X-ray diffraction, Hall-effect, photoluminescence and optical transmission measurements. Results indicated that the electrical properties of the films were extremely sensitive to the annealing temperature and the conduction type could be changed dramatically from n-type to p-type, and finally changed to weak p-type in a range from 600 °C to 800 °C. The B-N codoped p-type ZnO film with good structural, electrical and optical properties can be obtained at an intermediate annealing temperature region (e.g., 650 °C). The codoped p-type ZnO had the lowest resistivity of 2.3 Ω cm, Hall mobility of 11 cm2/Vs and carrier concentration of 1.2 × 1017 cm− 3. 相似文献
19.
In this study, we fabricated nanocone-presenting SiGe antireflection layers using only ultrahigh-vacuum chemical vapor deposition. In situ thermal annealing was adopted to cause SiGe clustering, yielding a characteristic nanocone array on the SiGe surface. Atomic force microscopy indicated that the SiGe nanocones had uniform height and distribution. Spectrophotometric measurements revealed that annealing at 900 °C yielded SiGe thin films possessing superior antireflective properties relative to those of the as-grown SiGe sample. We attribute this decrease in reflectance to the presence of the nanostructured cones. Prior to heat treatment, the mean reflectance of ultraviolet rays (wavelength < 400 nm) of the SiGe thin film was ca. 61.7%; it reduced significantly to less than 28.5% when the SiGe thin film was annealed at 900 °C. Thus, the drop in reflectance of the SiGe thin film after thermal treatment exceeded 33%. 相似文献
20.
Flora M. Li Rob WaddinghamWilliam I. Milne Andrew J. FlewittStuart Speakman James DutsonSteve Wakeham Mike Thwaites 《Thin solid films》2011,520(4):1278-1284
With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells. 相似文献