共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Lpez-Mata M.E. Nicho Hailin Hu G. Cadenas-Pliego E. García-Hernndez 《Thin solid films》2005,490(2):189-195
Poly3-octylthiophene (P3OT) was synthesized by direct oxidation of 3-octylthiophene using FeCl3 as oxidant/catalyst. It was observed that the purity of FeCl3 affected the molecular weight and polydisparity as well as the degree of regioregularity of the polymer, measured by size exclusion chromatography and by 1H nuclear magnetic resonance, respectively. Optical absorption properties of the P3OT films were analyzed as a function of solution concentration, the type of the substrates and the mole percentage of the doping agent. Morphology study with atomic force microscopy indicates that the surface roughness and the cluster size of the polymeric films are influenced by the P3OT solution concentration and the percentage molarity of ferric chloride. FeCl3 doped P3OT films show enlarged clusters compared with the pristine one due to the introduction of FeCl3 molecules in the original P3OT chains, a phenomenon observed in electrochemically doped heterocyclic conducting polymers reported in the literature. 相似文献
2.
We have investigated the structural and optical properties of P3OT and P3OT/fullerene thin films in view of their application as active layer in plastic solar cells. Films of these materials were prepared by spin coating from toluene solutions onto silicon substrates. Their optical properties were studied by spectroscopic ellipsometry, which provides the anisotropic dielectric function of the films. Moreover, structural properties were studied using X-ray diffraction. A close correlation between the results obtained by both methods could be found. Especially, the strong optical anisotropy of the films can be explained in terms of a preferable orientation of the polymer chains parallel to the substrate. The effect of the optical anisotropy on the performance of optoelectronic devices is discussed. 相似文献
3.
Schottky and heterojunction diodes were fabricated using high tensile strength polymers. The heterojunction diode was fabricated by sequential electrochemical polymerisation of 3-methyl thiophene and 3-octyl thiophene on an indium-tin oxide (ITO) coated glass substrate. The high tensile strength enabled the bilayer (used in heterojunction diodes) or the poly 3-octyl thiophene films (used in the Schottky diodes) to be peeled of from the substrate and sandwich it between any two desired metals. It was found that the Schottky diodes of ITO (or Si)/POT/Al (or Zn) exhibit moderate rectifying behaviour and ITO (or Si)/POT/Cu devices exhibit ohmic contact. The POT/PMT heterojunction diode showed excellent rectification effect when sandwiched between any two metals irrespective of their work function. This shows that the results observed were solely due to the polymer/polymer interface. The Cu/POT/PMT/Cu heterojunction system was used in this study. The carrier-flow of the two semiconductors in the Cu/POT/PMT/Cu heterojunction diode was discussed in details. The rectification ratio, the barrier height, and the ideality factor for the heterojunction diode were found to be 64 (±1.2 V), 0.81 eV, and 5.7 under ambient conditions, respectively. Some of the important energy band parameters were also determined. 相似文献
4.
M.E. Nicho C.H. García-EscobarM.C. Arenas P. Altuzar-CoelloR. Cruz-Silva M. Güizado-Rodríguez 《Materials Science and Engineering: B》2011,176(17):1393-1400
Poly(3-hexylthiophene) (P3HT) has interesting optoelectronic properties and a wide variety of applications such as solar cells and O-FET devices. It is a soluble conductive polymer but their mechanical properties are poor and its conductivity is unstable in environmental condition. With the finality of overcome these disadvantages, P3HT binary blends with two insulating polymers, polystyrene (PS) and polymethylmetacrilate (PMMA), have been synthesized by direct oxidation of 3-hexylthiophene with FeCl3 as oxidant inside the insulator polymers. Molecular weight and polydispersity of P3HT polymer were measured by size exclusion chromatography and the degree of regioregularity by 1H RMN. P3HT/PS and P3HT/PMMA thin films were prepared by spin-coating technique from toluene solution at different P3HT concentrations. The doped films were obtained by immersion during 30 s in a 0.3 M ferric chloride (FeCl3) solution in nitromethane. A classical percolation phenomenon was observed in the electrical properties of the binary blends, it was smaller than 4 wt.% of P3HT in the blend. Atomic force microscopy and confocal microscopy showed a phase-separated morphology. Variation in the surface morphology of the blends was observed, which was a function of the polymer concentration and the type of insulator polymer used in the blends. The insulator polymer was segregated on the surface of the films and showed pit and island-like topography. The pit and island size changed as a function of the polymer concentration. Optical absorption properties as a function of the P3HT concentration in the undoped and doped state were analyzed. In doped state, the bipolaron bands in the PS/P3HT and PMMA/P3HT blends were observed from a P3HT concentration of 1 wt.% and 3 wt.%, respectively. Finally, the polymers were analyzed by thermogravimetric analysis and infrared spectroscopy. 相似文献
5.
M.E. Nicho S. García-Carvajal P.A. Márquez-Aguilar M. Güizado-Rodríguez J. Escalante-García G. Medrano-Baca 《Materials Chemistry and Physics》2011
Polythiophene derivatives with azo chromophore were synthesized via copolymerization of 3-octylthiophene (3OT) and 2-[N-ethyl-N-[4-[(4-nitrophenyl)azo]phenyl]amino]ethyl 3-thienylacetate (3-DRT). This copolymer has interesting optoelectronic properties and a variety of applications such as electrochromic and electronic devices. The polymerization process of 3OT and the functionalized thiophene was carried out via FeCl3 oxidative polymerization. Thin films of poly(3OT-co-3-DRT) copolymer were prepared by spin-coating technique from toluene. FTIR and 1H NMR spectroscopy revealed the presence of chromophore groups in the copolymer chain. Molecular weight and polydispersity of the polymers were measured by size exclusion chromatography. Changes in the surface topography of copolymers were analyzed by atomic force microscopy; the results showed that the copolymers presented some protuberances of variable size unlike the homogeneous granular morphology of P3OT. It is believed that these changes appeared by the incorporation of 3-DRT in the polymer. P3ATs are electrochromic materials that show color change upon oxidation-reduction process. We report that electrochemical characterization of poly(3OT-co-3-DRT) copolymer films synthesized chemically on indium-tin oxide (ITO) glass substrates showed an additional color to the P3OT homopolymer. Optical absorption properties of the polymer films were analyzed in the undoped and doped states and as a function of 3-DRT concentration in the copolymer. The nonlinear optical properties of the copolymers in the undoped and doped states were analyzed by Z-scan technique. The copolymers showed a change of non-linearity sign when the film was doped and results showed that the copolymers have a positive (self-focusing) and negative (self-defocusing) nonlinear optical properties which make them interesting for application as optoelectronic devices. We determined that the nonlinearity of the polymer films was a Kerr type. 相似文献
6.
Poly(3-alkylthiophene) (P3AT) with a high Seebeck coefficient has recently been reported. However, P3AT/inorganic conductive composites exhibit relatively poor thermoelectric performance because of their low electrical conductivity. In this work, carbon fiber sheets with a high electrical conductivity were chosen as the inorganic phase, and poly(3-octylthiophene)(P3OT)/carbon fiber composites were prepared by casting P3OT solution onto the carbon fiber sheets. The carbon fiber sheets incorporated into the composites can provide good electrical conductivity, and P3OT can provide a high Seebeck coefficient. The highest power factor of 7.05 μW m−1 K−2 was obtained for the composite with 50 wt% P3OT. This work suggests a promising method for preparing large-scale thermoelectric composites with excellent properties. 相似文献
7.
Johnny N. MartinsTaís S. Bassani Ricardo V.B. Oliveira 《Materials science & engineering. C, Materials for biological applications》2012,32(2):146-151
Nanocomposites of poly(vinylidene fluoride) and polyhedral oligomeric silsesquioxane were prepared through melt blending. Morphology, viscoelastic and thermal properties were investigated. Up to 1 wt.% the processing conditions were efficient to prevent formation of large POSS agglomerates. In the nanocomposites with higher POSS contents these conditions could not avoid it, because of the strong interaction among POSS molecules. The presence of two different crystalline phases in nanocomposite was evidenced by X-ray diffraction and Fourier Transformed Infra-Red Spectroscopy. The nanocomposite with 5 wt.% content had the highest values for degree of cristallinity. The polyhedral oligomeric silsesquioxane molecules are acting as lubricant in the system, once lower values for storage modulus as well as for viscosity were observed. 相似文献
8.
Spin-coated poly(o-methoxyaniline) (POMA) thin films on various substrates were investigated using spectroscopic ellipsometry (SE) in the 1.5–4.5 eV photon energy range. Spin-coating process parameters are reported (spin speed and concentration). Substrates with higher surface energy were found to increase polymer film thickness and decrease roughness. An optical model was developed using SE data along with complementary data from atomic force microscopy and UV–vis spectroscopy to obtain optical properties—refractive index n and extinction coefficient k for POMA. The model includes Lorentz oscillators for the POMA film and a Bruggeman effective medium approximation for roughness. In-plane film optical anisotropy was not observed, but a small out of plane anisotropy was detected for the polymer. 相似文献
9.
Plasma polymerized thin film of conducting poly(3-octylthiophene) was deposited at room temperature by plasma enhanced chemical vapor deposition method using (3-octylthiophene) monomer as precursor. The radio frequency (RF: 13.56 MHz, power supply: 30 W) was applied at constant argon gas pressure for the formation of plasma. Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), X-ray diffractometry (XRD) and high resolution transmission electron microscopy (HRTEM) have been done for the as grown films. As reported in literature polythiophenes prepared by rf plasma polymerization are highly crosslinked and amorphous. However, in present investigations, well defined crystalline regions have been observed by HRTEM investigations and have been correlated with X-ray diffraction data. The observed crystallinity is attributed to controlling the parameters of the synthesis. 相似文献
10.
The optical and electrical properties of composite thin films of poly(3-hexylthiophene)s (PAT6s), processing different stereo-regularity originating from side-chain regio orders have been studied. The laser emission properties of PAT6 composite thin films in microdisk structure have been observed by pulsed photopumping. From the electrical and optical measurements, the electrical conductivity and the quantum efficiency of the PAT6 composite films were estimated. The emission and conductivity depending on the mixture ratios were discussed by taking the stereo-regularity of the molecular structure into consideration. 相似文献
11.
Poly(3-hydroxybutyrate)/nano-hydroxyapatite (PHB/nHA) composite scaffolds were fabricated via powder mixing, compression moulding, and particle leaching technique. The scaffolds had high porosity with interconnected porous architecture, a favorable structure for cell attachment and new bone tissue ingrowth. A homogeneous dispersion and a uniform distribution of HA nanoparticles in the polymer matrix were obtained. The scaffolds exhibited improved compressive modulus and compressive strength, which were all in the range of compressive modulus and compressive strength of cancellous bone. In addition, the use of toxic organic solvents was eliminated. Thus, the fabricated PHB/nHA composite scaffolds tend to be promising for application in bone tissue engineering. 相似文献
12.
M.E. Nicho C.H. García-Escobar D. Hernández-Martínez I. Linzaga-Elizalde G. Cadenas-Pliego 《Materials Science and Engineering: B》2012,177(16):1441-1445
In this work, CoolMate microwave synthesis system was employed to synthesize soluble poly(3-hexylthiophene) by direct oxidation of 3-hexylthiophene monomer with FeCl3 as oxidant. P3HT was synthesized varying reaction time by 2 h, 1 h and 0.5 h. According to the results optimal microwave radiation time for synthesis was 1 h. On the other hand, P3HT was synthesized in two different solvents: chloroform (CHCl3) and dichloromethane (CH2Cl2). The obtained yields depend on the solvent and the reaction time used in the synthesis, microwave-assisted synthesis leads to outstanding increase in yield (with dichloromethane solvent). Homogeneous thin films were prepared by spin-coating technique from toluene. Physicochemical characterization of P3HT polymers was carried out: changes in weight molecular distribution and polydispersity were obtained by HPLC (high-performance liquid chromatography); dyads and triads percent were analyzed by NMR (nuclear magnetic resonance). Surface topographical changes were obtained by atomic force microscopy (AFM). AFM images revealed that the surface morphology depends on synthesis method, reaction time and solvent used. Finally the samples were characterized by thermogravimetric analysis (TGA) and ultraviolet–visible analysis (UV–vis). Compared with the traditional method (without microwave), this method provided considerable decrease in the reaction time, both lower polydispersity and molecular weight, less volume of solvents for the synthesis, as well as more alternatives for solvent choice. The results confirmed the versatility of the procedure by microwave, which yields polymeric materials in 1 h and has no adverse effects on the polymers quality. 相似文献
13.
Conductive polymer coating precursors were prepared using poly (3, 4-ehtylenedioxythiophene) (PEDOT) and three kinds of silane precursors (Q type, T type, and bridged T type) through an in-situ organic/inorganic hybrid sol-gel process. The spin-coated precursor films on Poly(ethyleneterephthalate) substrate exhibited fairly good surface resistance (~ 104 Ω/□), transparency (~ 80%) and pencil hardness (2 - 4 H). The solvent resistance of the film using 2, 5-bis (triethoxysilyl)-3, 4-ethylenedioxythiophene (BTES-EDOT) was excellent as compared with the films that used silane precursors due to a high degree of BTES-EDOT crosslinking in the hybrid film. Moreover, EDOT moiety in the BTES-EDOT molecule may contribute to homogeneous dispersion of the PEDOT in the organic-inorganic hybrid film. 相似文献
14.
Synthesis and characterization of thin films of poly(3-methyl thiophene) by rf-plasma polymerization
To facilitate synthesis of poly(3-methyl thiophene) thin film by RF-plasma polymerization process, suitable modifications have been done in a RF-sputtering set up. The deposition rate is found to be 3.33 nm/min. The synthesized films are characterized by FTIR, XRD, Ellipsometry, UV-Visible absorption spectroscopy and SEM. From FTIR, the formation of poly(3-methyl thiophene) has been confirmed. It is found that the synthesized polymer is cross-linked. XRD shows the amorphous nature of the prepared polymer film. The optical band gap has been estimated to be 2.14 eV from UV-visible absorption spectrum. Thickness of the polymer films has been measured to be 2000 Å by ellipsometry. 相似文献
15.
Zhaoting Xiong Chunfa Dong Hao Cai Changqing Liu Xianglin Zhang 《Materials Chemistry and Physics》2013
Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)/silver nanoparticles composite inks have been prepared through in situ synthesis and ultrasonic dispersion. The developed inks were proved to be suitable for various inkjet printing trials to deposit the thin films which were subsequently characterized to assess their electric and optical properties. The results have indicated that the dedoping of PSS from PEDOT during the in situ synthesis can be detrimental to the conductivity of the deposited composite films. However, the addition of silver nanoparticles to pristine PEDOT:PSS has significantly enhanced the conductivity of the thin films, with an inevitable loss in transparency. The various factors that can influence the properties of the thin films have also been analyzed and discussed. This study provides an insight into the effect of silver nanoparticles on PEDOT:PSS thin films deposited using inkjet printing process, and their properties due to the methods of ink formulation. 相似文献
16.
Keizo Kato Kazuki Yamashita Yasuo Ohdaira Akira Baba Kazunari Shinbo Futao Kaneko 《Thin solid films》2009,518(2):758-761
The attenuated total reflection (ATR) and emission light properties utilizing surface plasmon (SP) excitations were measured for the electrochemical change of poly(3-hexylthiophene-2,5diyl) (P3HT) thin films in-situ. The SP emission light could detect the SP excited by molecular luminescence of P3HT. The ATR and SP emission light properties were observed for the doped–dedoped states of P3HT thin film. The ATR and SP emission light properties were remarkably changed with the electrochemical doping and dedoping. The SP emission light also decreased by decrease of the molecular luminescence of P3HT by doping. For the dedoped-state P3HT thin film, SP emission light also increased by increase of the molecular luminescence. The SP emission light excited by molecular luminescence can be controlled by the control of doping–dedoping state. 相似文献
17.
By optimizing the P3OT/CISe ratio, TiO2 content in the P3OT/CISe active layer, annealing temperature and time, this study investigated hybrid Al/Ca/P3OT:CISe:TiO2/PEDOT:PSS/ITO thin film solar cells with improved efficiency. Due to an increase in charge-carrier transport and a decrease of electron-hole recombination, it is possible to increase the efficiency of hybrid solar cells by adding TiO2 nanoparticles to the P3OT:CISe active film. Also, performance enhancement of the solar cells can occur with an increase of CISe content in P3OT as well as the addition of a PEDOT:PSS layer to the cell structure. The optimum TiO2 content in P3OT:CISe layer is 15 wt.%. The optimum annealing temperature and time are 125 °C and 30 min, respectively. The formation of large CISe and TiO2 aggregates that reduce charge mobility may cause the decrease of efficiency. The rough surface may effectively reduce the charge-transport distance and provide nanoscale phase separation that further enhances internal light scattering and light absorption. The best results for the open circuit voltages (Voc), short-circuit current density (Jsc), fill factor (FF), and efficiency (ηe) of Al/Ca/POCT15/PEDOT:PSS/ITO hybrid solar cells obtained at optimized conditions were Voc = 0.49, Jsc = 3.20, FF = 42.96, and ηe = 0.674, respectively. 相似文献
18.
Saihua Jiang Zhou GuiYuan Hu Keqing ZhouYangyang Dong Yongqian Shi 《Materials Chemistry and Physics》2013
Poly(methyl methacrylate) (PMMA)/dodecylamine templated lamellar aluminophosphate (DDA-LAP) intercalated nanocomposites are prepared by in situ bulk polymerization of MMA. The intercalated structure is characterized. With the intercalation of DDA-LAP in PMMA matrix, the glass-transition temperatures of nanocomposites (Tg) are increased. The nanocomposites obtained keep relatively high transparency in optical property and have a significant improvement in mechanical properties and thermal stability. The mechanism for the properties enhancement is investigated. The strong interfacial interaction between the aluminophosphate layers and the PMMA chains, the homogeneously distribution and the graphitized char formation during heating are three key roles for the properties improvement. 相似文献
19.
L.M. Bertus C. Faure A. Danine C. Labrugere G. Campet A. Rougier A. Duta 《Materials Chemistry and Physics》2013
Thin films of WO3 were prepared by surfactant assisted spray pyrolysis on F-doped SnO2 (FTO) conductive glass by using hexadecyltrimethylammonium bromide (HTAB) and polyethylene glycol (PEG400):HTAB as growth controlling agents. The surface tension of the spraying solutions was experimentally evaluated and was correlated with the deposition processes (nucleation and growth) of very smooth and homogenous films. The effect of the surfactant, alone and associated with PEG, on the structure (XRD), morphology (AFM), surface composition (XPS), FTIR and hydrophilicity (contact angle) were investigated and their influence on the electrochromic activity was discussed. Using surfactants and PEG, the coloration efficiency, transmission modulation and cycling stability of the WO3 thin films can be enhanced. 相似文献
20.
The photovoltaic Cd1−xZnxS thin films, fabricated by chemical bath deposition, were successfully used as n-type buffer layer in CuInGaSe2 (CIGS) solar cells. Comprehensive optical properties of the Cd1−xZnxS thin films were measured and modeled by spectroscopic ellipsometry (SE), which is proven to be an excellent and non-destructive technique to determine optical properties of thin films. The optical band gap of Cd1−xZnxS thin films can be tuned from 2.43 eV to 3.25 eV by controlling the Zn content (x) and deposition conditions. The wider-band-gap Cd1−xZnxS film was found to be favorable to improve the quantum efficiency in the wavelength range of 450-550 nm, resulting in an increase of short-circuits current for solar cells. From the characterization of quantum efficiency (QE) and current-voltage curve (J-V) of CIGS cells, the Cd1−xZnxS films (x = 0.32, 0.45) were demonstrated to significantly enhance the photovoltaic performance of CIGS solar cell. The highest efficiency (10.5%) of CIGS solar cell was obtained using a dense and homogenous Cd0.68Zn0.32S thin film as the buffer layer. 相似文献