首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical-transmission spectra are very sensitive to inhomogeneities in thin films. In particular, a non-uniform thickness produces a clear shrinking in the transmission spectrum at normal incidence. If this deformation is not taken into account, it may lead to serious errors in the calculated values of the refractive index and film thickness. In this paper, a method first applied by Swanepoel for enabling the transformation of an optical-transmission spectrum of a thin film of wedge-shaped thickness into the spectrum of a uniform film, whose thickness is equal to the average thickness of the non-uniform layer, has been employed. This leads subsequently to the accurate derivation of the refractive index in the subgap region (0.1–1.8 eV), the average thickness, as well as a parameter indicating the degree of film-thickness uniformity. This optical procedure is applied to the particular case of freshly-prepared films of the Ge10As15Se75 ternary chalcogenide glassy alloy. The dispersion of the refractive index is discussed in terms of the Wemple–DiDomenico single-oscillator model. The optical-absorption edge is described using the ‘non-direct transition' model proposed by Tauc, and the optical energy gap is calculated by Tauc's extrapolation. Finally, the photo-induced and thermally induced changes in the optical properties of the a-Ge10As15Se75 layers are also studied.  相似文献   

2.
The paper presents investigations of the optical properties of thin high-refractive-index silicon nitride (SiNx) and diamond-like carbon (DLC) films deposited by the radio-frequency plasma-enhanced chemical vapor deposition method for applications in tuning the functional properties of optical devices working in the infrared spectral range, e.g., optical sensors, filters or resonators. The deposition technique offers the ability to control the film's optical properties and thickness on the nanometer scale. We obtained thin, high-refractive-index films of both types at deposition temperatures below 350 °C, which is acceptable under the thermal budget of most optical devices. In the case of SiNx films, it was found that for short deposition processes (up to 5 min long) the refractive index of the film increases in parallel with its thickness (up to 50 nm), while for longer processes the refractive index becomes almost constant. For DLC films, the effect of refractive index increase was observed up to 220 nm in film thickness.  相似文献   

3.
Artificial neural networks and the Levenberg–Marquardt algorithm are combined to calculate the thickness and refractive index of thin films from spectroscopic reflectometry data. Two examples will be discussed, the first is a measurement of thickness and index of transparent films on silicon, and the second is a measurement of three thicknesses and index of poly-silicon in a rough poly-silicon on oxide stack. A neural network is a set of simple, highly interconnected processing elements imitating the activity of the brain, which are capable of learning information presented to them. Reflectometry has been used by the semiconductor industry to measure thin film thickness for decades. Modeling the optical constants of a film in the visible region with a Cauchy dispersion model allows the determination of both thickness and refractive index of most transparent thin films from reflectance data. The use of an alloy interpolation model for the optical constants of poly-silicon allows the determination of thicknesses and poly optical constants. In this work artificial neural networks are used to obtain good initial estimates for thickness and dispersion model parameters, these estimates are then used as the starting point for the Levenberg–Marquardt algorithm which converges to the final solution in a few iterations. These measurement programs were implemented on a Nanometrics NanoSpec 8000XSE.  相似文献   

4.
Baek J  Kovar D  Keto JW  Becker MF 《Applied optics》2006,45(7):1627-1639
Nonuniformity in the thickness of thin films can severely distort their transmission spectra as compared with those of flat, smooth films. Methods that extract properties such as refractive index, thickness, and extinction coefficient of such films can suffer inaccuracies when they are applied to wedged or nonuniformly thick films. To accurately extract optical properties of nonuniform films, we have developed a novel numerical method and efficient constitutive relations that can determine film properties from just the transmission spectrum for films that are locally smooth with negligible scattering loss. This optimum parameter extraction (OPE) method can accommodate films with two-dimensional thickness variation that would result in significant errors in the values of refractive index and film thickness if not considered. We show that for carefully chosen test cases and for actual pulsed-laser-deposition AlN thin films, properties such as refractive index, extinction coefficient, and film thickness were very accurately determined by using our OPE method. These results are compared with previous techniques to determine the properties of thin films, and the accuracy of and applicable conditions for all these methods are discussed.  相似文献   

5.
Ellipsometry is often used to determine the refractive index and/or the thickness of a polymer layer on a substrate. However, simultaneous determination of these parameters from a single-wavelength single-angle measurement is not always possible. The present study determines the sensitivity of the method to errors of measurement for the case of phase modulated ellipsometry and identifies conditions for decoupling film thickness and refractive index. For a specific range of film thickness, both the thickness and the refractive index can be determined from a single measurement with high precision. This optimal range of the film thickness is determined for organic thin films, and the analysis is tested on hydrogel-like polymer films in air and in water.  相似文献   

6.
Ca0.25Ba0.75Nb2O6 (CBN25) thin film was prepared on quartz substrate by spinning coating and the optical properties were investigated by a Hitachi U-3410 spectrophotometer and a Metricon 2010 prism coupler. The optical band gap, thickness and refractive index at 632.8 nm of the CBN25 thin film were determined to be 3.65 eV, 529 nm and 2.2258, respectively. The dispersion of the refractive index fitted to Sellmeier relation well and optical waves could be guided into the thin film, which implied that CBN25 thin films were promising for integrated optics and optically active devices.  相似文献   

7.
The gallium doped zinc oxide has been one of the candidates for the transparent conducting oxide thin film electrode. It is not suitable to use a conventional light interference method to measure the thickness of the gallium doped zinc oxide thin film because the refractive index and extinction coefficient of the thin film is unknown during the optimization of the deposition conditions. In this paper, we report on the details of the film thickness program which uses the measured optical and electric properties and relationship between the plasma frequency and the optical constant of the film. The obtained film thickness of the prepared gallium doped zinc oxide thin film using the program was comparable with thicknesses measured by a cross-sectional analysis of the atomic force microscopy and the surface profiler. Moreover, the optical constant of refractive index and extinction coefficient of the film could also be estimated.  相似文献   

8.
The use of the ellipsometer for the measurement of the thickness and refractive index of very thin films is reviewed. The Poincaré sphere representation of the state of polarization of light is developed and used to describe the reflection process. Details of the operation of the ellipsometer are examined critically. A computational method is presented by which the thickness of a film of known refractive index on a reflecting substrate of known optical constants may be calculated directly from the ellipsometer readings. A method for computing both the refractive index and thickness of an unknown film is also developed. These methods have been applied to the determination of the thickness of an adsorbed water layer on chromium ferrotype plates and on gold surfaces. In the former case the thickness was 23 to 27 Å, and in the latter was 2 to 5 Å. The measurement of the thickness and refractive index of barium fluoride films evaporated on chromium ferrotype surfaces is used as an illustration of the simultaneous determination of these two quantities.  相似文献   

9.
The use of the ellipsometer for the measurement of the thickness and refractive index of very thin films is reviewed. The Poincaré sphere representation of the state of polarization of light is developed and used to describe the reflection process. Details of the operation of the ellipsometer are examined critically. A computational method is presented by which the thickness of a film of known refractive index on a reflecting substrate of known optical constants may be calculated directly from the ellipsometer readings. A method for computing both the refractive index and thickness of an unknown film is also developed. These methods have been applied to the determination of the thickness of an adsorbed water layer on chromium ferrotype plates and on gold surfaces. In the former case the thickness was 23 to 27 Å, and in the latter was 2 to 5 Å. The measurement of the thickness and refractive index of barium fluoride films evaporated on chromium ferrotype surfaces is used as an illustration of the simultaneous determination of these two quantities.  相似文献   

10.
Refractive indices of textured indium tin oxide and zinc oxide thin films   总被引:1,自引:0,他引:1  
The refractive indices of textured indium tin oxide (ITO) and zinc oxide (ZnO) thin films were measured and compared. The ITO thin film grown on glass and ZnO buffered glass substrates by sputtering showed distinct differences; the refractive index of ITO on glass was about 0.05 higher than that of ITO on ZnO buffered glass in the whole visible spectrum. The ZnO thin film grown on glass and ITO buffered glass substrates by filtered vacuum arc also showed distinct differences; the refractive index of ZnO on glass was higher than that of ZnO on ITO buffered glass in the red and green region, but lower in the blue region. The largest refractive index difference of ZnO on glass and ITO buffered glass was about 0.1 in the visible spectrum. The refractive index variation was correlated with the crystal quality, surface morphology and conductivity of the thin films.  相似文献   

11.
Indium tin oxide (ITO) thin films, produced by electron beam evaporation technique onto quartz substrates maintained at room temperature, are grown as nanofibers. The dependence of structural and optical properties of ITO thin films on the film thickness (99-662 nm) has been reported. The crystal structure and morphology of the films are investigated by X-ray diffraction and scanning electron microscope techniques, respectively. The particle size is found to increase with increasing film thickness without changing the preferred orientation along (2 2 2) direction. The optical properties of the films are investigated in terms of the measurements of the transmittance and reflectance determined at the normal incidence of the light in the wavelength range (250-2500 nm). The absorption coefficient and refractive index are calculated and the related optical parameters are evaluated. The optical band gap is found to decrease with the increase of the film thickness, whereas the refractive index is found to increase. The optical dielectric constant and the ratio of the free carrier concentration to its effective mass are estimated for the films.  相似文献   

12.
R. Todorov  A. Paneva 《Thin solid films》2010,518(12):3280-3869
Optical properties of thin chalcogenide films from the systems As-S(Se) and As-S-Se were investigated as a function of the film composition, film thickness and conditions of illumination by light using multiple-angle-of-incidence ellipsometry. Thin films were deposited by thermal evaporation and exposed to white light (halogen lamp) and to monochromatic light from Ar+ — (λ = 488, 514 nm) and He-Ne- (λ = 632.8 nm) lasers. The ellipsometric measurements were carried out at three different angles of light incidence in the interval 45-55°, at λ = 632.8 nm. An isotropic absorbing layer model was applied for calculation of the optical constants (refractive index, n and extinction coefficient, k) and film thickness, d. The homogeneity of the films was checked and verified by applying single-angle calculations at different angles. It was shown that the refractive index, n of As-S-Se films is independent of film thickness in the range of 50 to 1000 nm and its values varied from 2.45 to 3.05 for thin layers with composition As2S3 and As2Se3, respectively. The effect of increasing in the refractive index was observed after exposure to light which is related to the process of photodarkening in arsenic containing layers. The viability of the method for determining the optical constants of very thin chalcogenide films with a high accuracy was confirmed.  相似文献   

13.
A new method for the determination of optical constants of absorbing inhomogeneous thin films is proposed. It requires measurements at normal incidence of the reflectance and transmittance of the film. In an inhomogeneous thin film, the optical constants vary along the thickness of the film. It has been reported in the literature that only the spatial integral value of the absorption index needs to be considered if its value is small. Therefore, in the proposed method, the mean value of the absorption index was used. The validity of this assumption was tested. On the other hand, the variation in the refractive index along the thickness of the film was taken into account. The method is discussed along with the nature of the solutions obtained and the effects of various parameters and assumptions. The method is applied successfully to inhomogeneous thin films of zirconium oxide.  相似文献   

14.
An optical waveguide structure consisting of side-polished single-mode fiber covered with thin a-Si:H planar waveguide is studied as a channel-dropping narrow-band filter and fiber-optic polarizer. Spectral and polarization characteristics of the structure are measured in the wavelength region of 600–1600 nm, for the different values of the a-Si:H film thickness and the superstrate refractive index. The FWHM of the filter is about 8 nm for the asymmetric waveguide and 10 nm for the symmetric one. The discrimination of the resonance minima for two polarizations varies from several tens for the symmetric PWG up to several hundreds of nanometers for the asymmetric PWG. The optical losses in the off-resonance region are less than 0.3 dB. The measured value of the extinction coefficient of the fiber-optical polarizer is 32.5 dB.  相似文献   

15.
《Thin solid films》1987,148(1):17-27
A new method for determining the thickness and the spectral dependence of the refractive index characterizing a non-absorbing thin film placed on an absorbing substrate is described in this paper. Within this method two spectral dependences of the reflectance corresponding to the system immersed into two different non- absorbing ambients are employed. The main advantage of the method is that the values of the thickness and the refractive index can be determined by means of explicit formulae. The second important advantage is the fact that non-absorbing thin films with relatively small thicknesses can be analysed. The method is applied to amorphous SiO2 thin films placed on silicon single-crystal wafers.  相似文献   

16.
Dielectric films used in insulating applications are becoming consistently thinner, hence the thickness of thin and ultathin films is an important design parameter. There exists a need for characterizing and understanding the thickness dependence of properties of films. The refractive index for low dielectric polytetrafluoroethylene crystalline submicrometer thin films is investigated by using an optical spectrometer coupled with a hot stage to monitor their thickness-dependent behavior. It is demonstrated that the refractive index has a strong dependence on film thickness, which can be related to the microstructure and morphology of the film as characterized by Fourier transform infrared spectroscopy and scanning electron microscopy.  相似文献   

17.
The refractive index of polypropylene in the far infrared (FIR) is measured by means of a suitably modified laser of a FIR spectrometer. When thin polypropylene films of 12.7-microm nominal thickness are introduced in the optical cavity of a laser at the Brewster angle, the radiation ceases because of the change in the optical path of the laser beam. This change is measured from the displacement of one of the laser mirrors, which is necessary to restore the laser resonance. The refractive index of polypropylene is deduced from this measurement and from the film thickness, as obtained from an independent measurement based in pycnometry. The value obtained for the refractive index is 1.492(15) for the wavelengths between 118.834 and 251.140 microm, for a polypropylene film of 12.71(2)-microm thickness and 0.9049(7) g/cm3 density.  相似文献   

18.
CdTe thin films of different thicknesses were deposited by electrodeposition on stainless steel substrates (SS). The dependence of structural and optical properties on film thickness was evaluated for thicknesses in the range 0.17–1.5 μm. When the film is very thin the crystallites lack preferred orientation, however, thicker films showed preference for (111) plane. The results show that structural parameters such as crystallite size, lattice constant, dislocation density and strain show a noticeable dependence on film thickness, however, the variation is significant only when the film thickness is below 0.8 μm. The films were successfully transferred on to glass substrates for optical studies. Optical parameter such as absorption coefficient (α), band gap (Eg), refractive index (n), extinction coefficient (ke), real (?r) and imaginary (?i) parts of the dielectric constant were studied. The results indicate that all the optical parameters strongly depend on film thickness.  相似文献   

19.
Ellipsometry is currently one of the most important techniques for characterization of the deposition and growth mode of ultra thin organic films. However, it is well known that for thicknesses normally encountered in organic monolayer films, as would occur for example in self-assembled monolayers, ellipsometry cannot be used to simultaneously determine the thickness and refractive index of the monolayer film. Current practice is to assume a reasonable value for the film refractive index and calculate an effective ‘ellipsometric thickness’. This communication seeks to show that the alternative approach of assuming a thickness for the monolayer (determined by the length of the molecule) and calculating the effective film refractive index lends itself to easier and more meaningful physical interpretation. The Lorentz-Lorenz formula is then used to transform the effective refractive index into a surface coverage and hence to an effective mass coverage. The methodology advanced is applied to the kinetics of formation of a self-assembled monolayer of a well-studied molecule, octadecanethiol on Au.  相似文献   

20.
We demonstrate the adaption of a further developed Mach-Zehnder interference (MZI) microscope for the rapid 3D characterization of transparent microstructured polymer thin films. In order to quantify the accuracy of the Mach-Zehnder interferometer, comparative film thickness measurements of photolithographically patterned poly(methacrylic acid) polymer brushes are performed employing two alternative techniques: white light profilometry (WIM) and atomic force microscopy (AFM). When the refractive index of the polymer brushes is calculated from MZI data, we obtain a good agreement with results received from an independent method (ellipsometry).In contrast to surface probing techniques such as AFM or WIM, Mach-Zehnder interferometry is a transmitted light method that measures both surface height profiles and refractive index distributions. MZI thus enables the quantification of film homogeneity with respect to height and density variations at the lateral resolution of a refraction limited microscope. We conclude that MZI is an adequate tool for the rapid and non-destructive characterization of structured polymer thin films. This method should be particularly useful for production quality control of microstructured polymer thin films which possess great potential in electronic device fabrication and biotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号