首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma polymer coatings were deposited from hexamethyldisiloxane on polyethylene terephthalate (PET) substrates while varying the operating conditions, such as the Ar and O2 flow rates, at a fixed radio frequency power of 300 W. The water vapor transmission rate (WVTR) of the untreated PET was 54.56 g/m2/day and was decreased after depositing the silicon oxide (SiOx) coatings. The minimum WVTR, 0.47 g/m2/day, was observed at Ar and O2 flow rates of 4 and 20 sccm, respectively, with a coating thickness of 415.44 nm. The intensity of the peaks for the Si-O-Si bending at 800-820 cm− 1 and Si-O-Si stretching at 1000-1150 cm− 1 varied depending on the Ar and O2 flow rates. The contact angle of the SiOx coated PET increased as the Ar flow rate was increased from 2 to 8 sccm at a fixed O2 flow rate of 20 sccm. It decreased gradually as the oxygen flow rate increased from 12 to 28 sccm at a fixed Ar carrier gas flow rate. The examination by atomic force microscopy revealed a correlation of the SiOx morphology and the water vapor barrier performance with the Ar and O2 flow rates. The roughness of the deposited coatings increased when either the O2 or Ar flow rate was increased.  相似文献   

2.
The grain size and density of the sintered (Zn1 − xAlxO)mIn2O3 bodies decreased with the small Al2O3 content (≤ 0.012), and then increased gradually by further increasing the Al2O3 content. The addition of Al for Zn in the (ZnO)mIn2O3 led to an increase in both the electrical conductivity and the absolute value of the Seebeck coefficient. This indicates that the power factor was significantly enhanced by adding Al for Zn. The thermoelectric power factor was maximized to 1.67 × 10− 3 W m− 1 K− 2 at 1073 K for the (Zn0.992Al0.008O)mIn2O3 sample.  相似文献   

3.
This paper deals with the influence of dysprosium oxide doping on thermophysical properties of LaMgAl11O19 ceramics. LaMgAl11O19 ceramic powders doped with different contents of dysprosium oxide were pressureless-sintered at 1700 °C for 10 h in air to fabricate dense bulk ceramics. La1−xDyxMgAl11O19 (= 0, 0.1, 0.2, 0.3) ceramics have a relative density of 90.7–96.0%, and exhibit a single phase of magnetoplumbite structure. Thermal diffusivity and thermal expansion coefficients of La1−xDyxMgAl11O19 ceramics were measured with a laser flash method and a high-temperature dilatometer. Thermal diffusivity of La1−xDyxMgAl11O19 ceramics decreases with increasing Dy2O3 content at identical temperature levels. The measured thermal conductivity of La1−xDyxMgAl11O19 ceramics is located in the range of 2.52–2.89 W m−1 K−1 at 1200 °C. Thermal expansion coefficient of La0.8Dy0.2MgAl11O19 ceramic is slightly higher than that of undoped LaMgAl11O19 ceramic at identical temperature levels.  相似文献   

4.
Enhanced thermoelectric properties of NaCo2O4 by adding ZnO   总被引:1,自引:0,他引:1  
K. Park  J.H. Lee 《Materials Letters》2008,62(15):2366-2368
The primary phase present in the as-sintered Na(Co1 − xZnx)2O4 (0 ≤ x ≤ 0.1) bodies was the solid solution of the constituent oxides with a bronze-type layered structure. The electrical conductivity of the Na(Co1 − xZnx)2O4 samples significantly increased with an increase in ZnO content. The sign of the Seebeck coefficient for all samples was positive over the whole temperature range (723-1073 K), i.e., p-type conduction. The power factor of Na(Co0.95Zn0.05)2O4 showed an outstanding power factor (1.7 × 10 3Wm 1 K 2) at 1073 K. The power factor was above four times superior to that of ZnO-free NaCo2O4 (0.4 × 10 3Wm 1 K 2). This originates from an unusually large Seebeck coefficient (415 μVK 1) accompanied with high conductivity (127Ω 1 cm 1) at 1073 K.  相似文献   

5.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

6.
MgAl2O4 spinel exhibits fascinating microwave dielectric properties, but the synthesis of dense MgAl2O4 ceramics requires high firing temperatures. In this study, Co is introduced into MgAl2O4 ceramics to improve their sinterability and microwave dielectric properties. An Mg1−xCoxAl2O4 solid solution of a spinel structure was observed in the MgAl2O4–CoAl2O4 system, and dense Mg1−xCoxAl2O4 ceramics were obtained by sintering at 1475–1500 °C in air for 2–6 h. Co addition is effective in lowering the sintering temperature to 1475 °C. Q × f of Mg1−xCoxAl2O4 ceramics was increased to 49,300 GHz with an increase in Co content to 0.2, but degraded with a further increase in Co content. The temperature coefficient of resonant frequency of Mg1−xCoxAl2O4 ceramics was sustained at between −73 and −23 ppm/°C to the variation of Co content.  相似文献   

7.
Luminescence properties of Y2−xGdxO3:Eu3+ (x = 0 to 2.0) thin films are investigated by site-selective laser excitation spectroscopy. The films were grown by pulsed laser deposition method on SiO2 (100) substrates. Cubic phase Y2O3 and Gd2O3 and monoclinic phase Gd2O3 are identified in the excitation spectrum of the 7F0 → 5D0 transition of Eu3+. The emission spectra of the 5D0 → 7FJ (J = 1 and 2) transition from individual Eu3+ centers were obtained by tuning the laser to resonance with each excitation line. The excitation line at around 580.60 nm corresponds to the line from Eu3+ with C2 site symmetry of cubic phase. New lines at 578.65 and 582.02 nm for the CS sites of Gd2O3 with monoclinic phase are observed by the incorporation of Gd in Y2O3 lattice. Energy transfer occurs between Eu3+ ions at the CS sites and from Eu3+ ions at the CS sites to those at the C2 site in Y2−xGdxO3.  相似文献   

8.
Polyimide (PI) nanocomposites with different proportions of Al2O3 were prepared via two-step reaction. Silicon nitride (Si3N4) was deposited on PI composite films by a RF magnetron sputtering system and used as a gas barrier to investigate the water vapor transmission rate (WVTR). The thermal stability and mechanical properties of a pure PI film can be improved obviously by adding adequate content of Al2O3. At lower sputtering pressure (4 mTorr), the PI/Al2O3 hybrid film deposited with Si3N4 barrier film exhibits denser structure and lower root mean square (RMS) surface roughness (0.494 nm) as well as performs better in preventing the transmission of water vapor. The lowest WVTR value was obtained from the sample, 4 wt.%Al2O3-PI hybrid film deposited with Si3N4 barrier film with the thickness of 100 nm, before and after bending test. The interface bonding, Al-N and Al-O-Si, was confirmed with the XPS composition-depth profile.  相似文献   

9.
Fabrication of Mg2Si1−xGex (x = 0-1.0) was carried out using a spark plasma sintering technique initiated from melt-grown polycrystalline Mg2Si1−xGex powder. The thermoelectric properties were evaluated from RT to 873 K. The power factor of Mg2Si1−xGex with higher Ge content (x = 0.6-1.0) tends to decrease at higher temperatures, and the maximum value of about 2.2 × 10− 5 Wcm− 1K− 2 was observed at 420 K for Mg2Si and Mg2Si0.6Ge0.4. The coexistence of Si and Ge gave rise to a decrease in the thermal conductivity in the Mg2Si1−xGex. The values close to 0.02 Wcm− 1K− 1 were obtained for Mg2Si1−xGex (x = 0.4-0.6) over the temperature range from 573 to 773 K, with the minimum value being about 0.018 Wcm− 1K− 1 at 773 K for Mg2Si0.4Ge0.6. The maximum dimensionless figure of merit was estimated to be 0.67 at 750 K for samples of Mg2Si0.6Ge0.4.  相似文献   

10.
All oxide solid state ITO (indium tin oxide)/LiyWO3−x/Li1−zMn2O4/ITO stacked structure was deposited on a silica glass substrate by pulsed laser deposition for its electrochromic application. The Li doped amorphous tungsten trioxide LiyWO3−x thin film prepared at room temperature and in oxygen pressure of 7 Pa got the color of blue due to the mixture valence state of tungsten. We found that the amorphous Li1−zMn2O4 thin film was suitable for the electrochromic application in spite of the low ion conductivity along in-plane direction. The ITO electrode thin film deposited at room temperature showed the relatively high transmittance and the usable conductivity. The transmittance at a wavelength of 750 nm for the ITO/LiyWO3−x/Li1−zMn2O4/ITO stacked film changed from 50% to 80% by the applied voltage, while the transmittance at around 450 nm did not change. The blue-colored electrochromic property could be observed for the all oxide solid state film.  相似文献   

11.
H1−xLaNb2−xMoxO7 was prepared by solid-state reaction followed by an ion-exchange reaction. Pt was incorporated in the interlayer of H1−xLaNb2−xMoxO7 by the stepwise intercalation reaction. The H1−xLaNb2−xMoxO7 showed hydrogen production activity and the activities were greatly enhanced by Pt co-incorporating. The x value in H1−xLaNb2−xMoxO7 had an important effect on the photocatalytic activity of the catalyst. When the x = 0.05, the H1−xLaNb2−xMoxO7/Pt showed a photocatalytic activity of 80 cm3 h−1 g−1 hydrogen evolution rate in 10 vol.% methanol solution under irradiation from a 100 W mercury lamp at 333 K.  相似文献   

12.
Jin Won Kim 《Thin solid films》2010,518(22):6514-6517
V-doped K0.5Bi4.5Ti4O15 (K0.5Bi4.5  x/3Ti4  xVxO15, KBTiV-x, x = 0.00, 0.01, 0.03, and 0.05) thin films were prepared on a Pt(111)/Ti/SiO2/Si(100) substrate by a chemical solution deposition method. The thin films were annealed by using a rapid thermal annealing process at 750 °C for 3 min in an oxygen atmosphere. Among them, KBTiV-0.03 thin film exhibited the most outstanding electrical properties. The value of remnant polarization (2Pr) was 75 μC/cm2 at an applied electric field of 366 kV/cm. The leakage current density of the thin film capacitor was 5.01 × 108 at 100 kV/cm, which is approximately one order of magnitude lower than that of pure K0.5Bi4.5Ti4O15 thin film capacitor. We found that V doping is an effective method for improving the ferroelectric properties of K0.5Bi4.5Ti4O15 thin film.  相似文献   

13.
Ti-added amorphous SiOx films were sputter-deposited into stacks of Pt/SiOx/Pt and Cu/SiOx/Pt. Optimally prepared Pt/SiOx/Pt exhibits unipolar resistive switching over 102 cycles, resistance ratio ∼ 103, yet wide voltage distribution (2 ∼ 7 V for SET, 0.5 ∼ 1.5 V for RESET). Cu/SiOx/Pt exhibit similar endurance, resistance ratio up to 107, and SET and RESET voltages reduced to 1.8 ∼ 4.2 V and 0.5 ∼ 1 V, respectively. Cu diffusion into SiOx at the virgin state may play a role in resistive switching of Cu/SiOx/Pt stack besides of filament conduction. Ti-added amorphous SiOx films incorporating Cu electrode shows potential for resistive memory.  相似文献   

14.
Effective top-side thin film encapsulation for organic light-emitting devices (OLEDs) was achieved by deposition of a multi-layer water diffusion barrier stack to protect the device against moisture permeation. The barrier stack was formed by alternative depositions of co-oxide and fluorocarbon (CFx) films. The co-oxide layer was fabricated by magnetron co-sputtering of silicon dioxide (SiO2) and aluminum oxide (Al2O3). While the CFx layer was formed by plasma enhanced chemical vapor deposition. The water vapor transmission rate of the optimized diffusion barrier stack can be down to 10− 6 g/m2/day. The OLEDs encapsulated with the multilayer stack have been shown to have operation lifetime of over 18,000 h which is nearly the same as devices with conventional glass-cover encapsulation.  相似文献   

15.
The microwave dielectric properties of La(Mg0.5−xCoxSn0.5)O3 ceramics were examined with a view to exploiting them for mobile communication. The La(Mg0.5−xCoxSn0.5)O3 ceramics were prepared using the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the La(Mg0.4Co0.1Sn0.5)O3 ceramics revealed that La(Mg0.4Co0.1Sn0.5)O3 is the main crystalline phase, which is accompanied by small extent of La2Sn2O7 as the second phase. Formation of this Sn-rich second phase was attributed to the loss of MgO upon ignition. Increasing the sintering temperatures seemed to promote the formation of La2Sn2O7. An apparent density of 6.67 g cm−3, a dielectric constant (?r) of 20.3, a quality factor (Q.F.) of 70,500 GHz, and a temperature coefficient of resonant frequency (τf) of −77 ppm °C−1 were obtained for La(Mg0.4Co0.1Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

16.
Ce1 − xFexO2 − δ solid solution films were prepared on amorphous silica substrates by laser chemical vapor deposition using metal dipivaloylmethanate precursors and a semiconductor InGaAlAs (808 nm in wavelength) laser. X-ray diffraction revealed the formation of single Ce1 − xFexO2 − δ phase at x ≤ 0.15, while CeO2 and Fe2O3 phases were found for higher Fe content. Highly (100)-oriented Ce1 − xFexO2 − δ (x = 0.02) films were obtained at laser power, PL = 50-200 W and deposition temperature, Tdep = 800-1063 K. Lotgering factor (200) was calculated to be above 0.8 for films prepared at PL = 50-150 W. X-ray photoelectron spectroscopy revealed the presence of Fe3+, Ce4+ and Ce3+ on solid solution films. Cross-sectional transmission electron microscope images disclosed a film columnar feather-like structure with a large number of nano-scale interspaces. Deposition rates were 2 or 3 orders of magnitude higher than those reported for conventional metal organic chemical vapor deposition of CeO2.  相似文献   

17.
Pb1-xBixTiO3 (x = 0.0-0.1) compounds were prepared to study the unique dopant effect of bismuth in PbTiO3. Their thermal expansions and structures were investigated by high-temperature X-ray diffraction and X-ray Rietveld method. The results indicated that Bismuth substitution evidently weakened the tetragonality of PbTiO3 solid solution, but increased the spontaneous polarization. Both the enhanced spontaneous polarization and the decreased tetragonality led to small volume shrinkage with temperature rising, where the average volumetric thermal expansion coefficient changed from − 1.99 × 10− 5/°C for pure PbTiO3 to − 0.56 × 10− 5/°C for Pb0.90Bi0.10TiO3. The Curie point of Pb1 − xBixTiO3 was slightly raised compared to PbTiO3 and permitted one to use it in a wide temperature range.  相似文献   

18.
CoFe2−xSmxO4 (x = 0–0.2) nanofibers with diameters about 100–300 nm have been prepared using the organic gel-thermal decomposition method. The composition, structure and magnetic properties of the CoFe2−xSmxO4 nanofibers were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductive coupling plasma mass analyzer and vibrating sample magnetometer. The CoFe2−xSmxO4 (x = 0–0.2) nanofibers obtained at 500–700 °C are of a single spinel structure. But, at 800 °C with a relatively high Sm content of 0.15–0.2 the spinel CoFe2−xSmxO4 ferrite is unstable and the second phase of perovskite SmFeO3 occurs. The crystalline grain sizes of the CoFe2−xSmxO4 nanofibers decrease with Sm contents, while increase with the calcination temperature. This grain reduction effect of the Sm3+ ions doping is largely owing to the lattice strain and stress induced by the substitution of Fe3+ ions with larger Sm3+ ions in the ferrite. The saturation magnetization and coercivity increase with the crystallite size in the range of 8.8–57.3 nm, while decrease with the Sm content from 0 to 0.2 owing to a smaller magnetic moment of Sm3+ ions. The perovskite SmFeO3 in the composite nanofibers may contribute to a high coercivity due to the interface pinning, lattice distortion and stress in the ferrite grain boundary fixing and hindering the domain wall motion.  相似文献   

19.
In this paper, we present a simple microwave-assisted synthesis of Zn1  xCoxO nanopowders. With the advantages of the microwave-assisted method, we have successfully synthesized good crystalline quality and good surface morphology Zn1  xCoxO nanopowders. The nanopowders are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-VIS absorption, and micro-Raman spectroscopy. We found, in the synthesis process, the surfactant Triethanolamine (TEA) plays an important role on the morphology of Zn1  xCoxO nanoparticles. The XRD study shows that for Co doping up to 5%, Co2+ ions are successfully incorporated into the ZnO host matrix. The absorption spectra of Zn1  xCoxO (x = 1-5%) nanopowders show several peaks at 660, 611 and 565 nm, indicating the presence of Co2+ ions in the tetrahedral sites. The Raman study shows that the linewidth of E2low mode increases with Co concentration, which further indicates the incorporation of Co2+ ions into the ZnO host matrix.  相似文献   

20.
We propose La1−xSrxMnO3 as a new lead-free and ruthenium-free conductive oxide used for thick film resistors. The temperature coefficient of resistivity (TCR) of the La1−xSrxMnO3 was controlled systematically by changing the composition x. The TCR behavior depended on the change of the crystal symmetries and the average valence of Mn ions. The highest value of 9356 ppm/°C was obtained at the x = 0.35. Zero TCR was realized around 0.200 < x < 0.225 and 0.45 < x < 0.50, where the critical x values were related to the characteristic change from Mott-insulator to metallic behavior. The systematical controlling TCR and the zero TCR are the first to be demonstrated for conductive oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号