共查询到17条相似文献,搜索用时 140 毫秒
1.
将具有可信度的BP神经网络应用于变压器故障诊断 总被引:2,自引:0,他引:2
BP神经网络具有自学习和自适应能力,比较适合于基于油中溶解气体分析的变压器故障诊断。分析了常规BP算法的不足,指出了加动量项BP算法的原理和优点。该方法减轻了网络训练过程中的振荡,加速了网络的收敛。针对常规的BP神经网络不能给出诊断结果的可信度问题,利用多个网络共同诊断,根据多个诊断结果的标准差获得诊断结果的可信度,多个结果的均值作为最终诊断结果,从而提高了准确性。构造了适合于变压器油中溶解气体分析故障诊断的神经网络,并将训练所得的多个神经网络用于变压器故障诊断。结果表明了该方法的有效性。 相似文献
2.
基于BP神经网络的变压器故障诊断 总被引:3,自引:0,他引:3
针对变压器故障诊断的特点,提出了一种基于BP神经网络的电力变压器故障诊断方法。采用稳定、快速的Levenberg-Marquardt算法训练多层前向人工神经网络,克服了标准BP算法收敛速度慢、易陷入局部极小的缺陷;在隐含层节点数的选取上,采用简单实用的黄金分割优选法,可以节省成本,提高搜索效率。仿真结果表明,该方法具有运算速度快和拟合精度高等优点,满足电力变压器故障诊断的要求。 相似文献
3.
针对BP神经网络在变压器故障诊断上存在的不足,提出基于ACS-SA文化基因算法的BP神经网络变压器故障诊断方法。在实际系统中,针对缺乏准确的变量参数估计,将边界变异策略和自适应步长策略引入标准布谷鸟算法中;提出一种在改进的布谷鸟算法中结合局部搜索策略的文化基因算法;建立BP神经网络变压器故障诊断模型,并用文化基因布谷鸟算法优化BP神经网络的权值和阈值。仿真实验及对比研究结果表明,该算法能准确有效地识别变压器的故障类型,较其他算法(CS-BP神经网络算法和POS-BP神经网络算法)有更高的准确率,为变压器故障诊断提供一种新思路。 相似文献
4.
基于改进PSO—BP算法的变压器故障诊断 总被引:4,自引:1,他引:4
提出一种利用改进粒子群算法和反向传播算法相结合的混合算法训练神经网络进行电力变压器故障诊断的方法.在改进的粒子群算法中考虑了邻居粒子中最优粒子信息,修正个体行动策略,增强粒子群的社会学习功能,保证全局搜索的有效性;引入随机粒子群机制,利用粒子群进化过程中的种群变异机制提高算法的寻优性能.变压器故障实例仿真和分析表明,该算法在收敛速度、计算精度和平均收敛性能方面都有较大改进,可有效诊断电力变压器故障. 相似文献
5.
6.
在变压器故障诊断中,目前BP神经网络算法存在训练样本分布不均匀,收敛速度慢、容易陷于局部极小点等问题,导致整体的诊断性能下降。通过对模糊聚类及LM算法改进的神经网络深入研究,并引入变压器故障诊断中,该算法应用模糊聚类对搜集到的样本预处理,提高样本的质量,再用LM算法改进的神经网络来优化搜索方向,可以实现网络训练速度及测试精度的提高。通过实例仿真实验,验证了该方法能够有效诊断出变压器的故障。 相似文献
7.
基于L-M算法的BP网络在变压器故障诊断中的应用 总被引:4,自引:0,他引:4
针对传统 BP 神经网络算法在变压器故障诊断中存在的收敛速度慢、容易陷入局部极小值的问题,通过对基于Levenberg-Marquardt 算法的 BP 神经网络进行深入研究,并最终应用于变压器故障诊断.该算法通过优化 BP 神经网络的搜索方向,加快了网络训练速度,提高了网络训练的精度.通过对实例数据仿真,证明了本方法能够有效地诊断出变压器的故障,为变压器故障诊断提供了一条新途径. 相似文献
8.
针对传统BP神经网络算法在变压器故障诊断中存在的收敛速度慢、容易陷入局部极小值的问题,通过对基于Levenberg-Marquardt算法的BP神经网络进行深入研究,并最终应用于变压器故障诊断。该算法通过优化BP神经网络的搜索方向,加快了网络训练速度,提高了网络训练的精度。通过对实例数据仿真,证明了本方法能够有效地诊断出变压器的故障,为变压器故障诊断提供了一条新途径。 相似文献
9.
10.
基于溶解气体分析(DGA)的变压器故障诊断法能发现用电气试验不易发现的轻度故障,还可以在初期阶段就判别正在缓慢发展的事故,是变压器内部故障早期诊断的最佳方法。 相似文献
11.
BP神经网络改进算法在电气故障诊断系统中的应用 总被引:10,自引:1,他引:10
文章将人工神经网络技术、基于动量因子技术的改进BP网络训练算法应用于飞机电气设备故障诊断。以飞机交流异步电动机为例,建立了故障诊断模型。仿真结果表明该算法的应用是可行的,具有较强的推广前景。 相似文献
12.
13.
基于模糊隶属度和BP神经元网络,提出了将模糊神经网络应用于变压器油中溶解气体故障诊断的方法。该方法采用了由输入层、输出层、隐含层和模糊化层组成的一种四层前向模糊神经网络,并利用模糊理论预处理数据,建立了基于模糊神经网络的变压器故障诊断模型。结果表明,该方法对变压器进行故障检剥诊断是有效的。 相似文献
14.
15.
16.
基于进化策略算法的人工神经网络变压器故障诊断法 总被引:2,自引:0,他引:2
提出一种基于进化策略算法的人工神经网络法对电力变压器故障进行诊断。该方法通过综合进化算法的全局搜索能力和神经网络输入和输出的高度非线性映射关系,可准确诊断变压器故障。它可自动调整神经网络的连接权和节点偏置值,以获得最佳网络模型。相对于普通人工神经网络而言,该法具有更快的学习速率和优良的诊断精度;并且相对于基于进化规划算法的人工神经网络法,本方法也具有更优良的性能。 相似文献
17.
GA-BP混合算法在变压器色谱诊断法中的应用 总被引:22,自引:7,他引:22
将一种改进的遗传操作与人工神经网络相结合的混合算法应用于电力变压器的故障诊断,有效地解决了常规BP算法易陷入局部极小、收敛速度慢和基本遗传算法早熟等缺点。实例仿真结果表明,该算法具有较快的收敛速度和较高的计算精度,满足电力变压器故障诊断的要求。 相似文献