首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, nickel-based composite anode catalysts consisting of Ni with either Pd on carbon or Pt on carbon (the ratio of Ni:Pd or Ni:Pt being 25:1) were prepared for use in direct borohydride fuel cells (DBFCs). Cathode catalysts used were 1 mg cm−2 Pt/C or Pd electrodeposited on activated carbon cloth. The oxidants were oxygen, oxygen in air, or acidified hydrogen peroxide. Alkaline solution of sodium borohydride was used as fuel in the cell. High power performance has been achieved by DBFC using non-precious metal, Ni-based composite anodes with relatively low anodic loading (e.g., 270 mW cm−2 for NaBH4/O2 fuel cell at 60 °C, 665 mW cm−2 for NaBH4/H2O2 fuel cell at 60 °C). Effects of temperature, oxidant, and anode catalyst loading on the DBFC performance were investigated. The cell was operated for about 100 h and its performance stability was recorded.  相似文献   

2.
The effect of adding small quantities (0.1-1 wt.%) of sodium borohydride (NaBH4) to the anolyte solution of direct ethanol fuel cells (DEFCs) with membrane-electrode assemblies constituted by nanosized Pd/C anode, Fe-Co cathode and anion-exchange membrane (Tokuyama A006) was investigated by means of various techniques. These include cyclic voltammetry, in situ FTIR spectroelectrochemistry, a study of the performance of monoplanar fuel cells and an analysis of the ethanol oxidation products. A comparison with fuel cells fed with aqueous solutions of ethanol proved unambiguously the existence of a promoting effect of NaBH4 on the ethanol oxidation. Indeed, the potentiodynamic curves of the ethanol-NaBH4 mixtures showed higher power and current densities, accompanied by a remarkable increase in the fuel consumption at comparable working time of the cell. A 13C and 11B {1H}NMR analysis of the cell exhausts and an in situ FTIR spectroelectrochemical study showed that ethanol is converted selectively to acetate while the oxidation product of NaBH4 is sodium metaborate (NaBO2). The enhancement of the overall cell performance has been explained in terms of the ability of NaBH4 to reduce the PdO layer on the catalyst surface.  相似文献   

3.
The electrochemical behaviour of dimethylamine borane and borohydride on platinum electrodes was investigated by cyclic voltammetry and polarization curves in discharges processes. Several overlapping peaks appear in the domain of hydrogen oxidation, i.e., in the potential range of −1.25 V to −0.50 V versus Ag/AgCl, mainly with the borohydride. This behaviour is associated with the hydrolysis of BH4 or (CH3)2NHBH3. As a consequence of secondary reactions the borohydride and dimethylamine borane oxidation in 3 M NaOH solution shows, respectively, a four- to six-electron process and a four- to five-electron process in direct fuel cells. The direct oxidation of the borohydride exhibits a peak at about −0.07 V versus Ag/AgCl, while the dimethylamine borane peak is at about −0.03 V versus Ag/AgCl. For the 0.04 M concentration the borohydride displays a power density of 31 W m−2 which is 16% higher than that of the dimethylamine borane.  相似文献   

4.
The fuel efficiency of borohydride electro-oxidation on carbon-supported Au and Ag electrodes was found to be highly dependent on the concentration ratio of [OH]/[BH4] in the solution. Near-8e reactions occurred when [OH]/[BH4] ≥ 5. However when [OH]/[BH4] was smaller than 5, hydrogen gas was evolved and the fuel efficiency was reduced. Only 3e reaction stoichiometry was obtained at [OH]/[BH4] = 1. Detailed cyclic voltammetry (CV) studies revealed that both the Au/C and Ag/C showed different anodic waves in varied NaOH–NaBH4 solutions. The CV analysis results suggest that BH3OH, an intermediate possibly produced by homogeneous hydrolysis, is responsible for the electrochemical reaction at [OH]/[BH4] = 1. Comparison of CV voltammograms in borohydride solutions with that in the H2-bubbled NaOH solution suggests that borohydride electro-oxidation on Au or Ag electrode is through direct BH4 oxidation rather than through a hydrogen ionization mechanism. It is concluded that there exists an inherent competition between two oxidizing species of OH and H2O during borohydride electro-oxidation, that is, if accessible OH ions are not sufficient for each BH4 to accomplish the 8e electro-oxidation, part of BH4 will react simultaneously with H2O to generate hydrogen.  相似文献   

5.
Life time test in direct borohydride fuel cell system   总被引:1,自引:0,他引:1  
The electric performances of direct borohydride fuel cells (DBFCs) are evaluated in terms of power density and life time with respect to the NaBH4 concentration. A DBFC constituted of an anionic membrane, a 0.6 mgPt cm−2 anode and a commercial non-platinum based cathode led to performances as high as 200 mW cm−2 at room temperature and with natural convection of air. Electrochemical life time test at 0.55 mA cm−2 with a 5 M NaBH4/1 M NaOH solution shows a voltage diminution of 1 mV h−1 and a drastic drop of performances after 250 h. The life time is twice longer with 2 M NaBH4/1 M NaOH solution (450 h) and the voltage decrease is 0.5 mV h−1. Analyses of the components after life time tests indicate that voltage loss is mainly due to the degradation of the cathode performance. Crystallisation of carbonate and borate is observed at the cathode side, although the anionic membrane displays low permeability to borohydride.  相似文献   

6.
Sodium borohydride (NaBH4) is a safe and practical hydrogen storage material for on-board hydrogen production. However, a significant obstacle in its practical use on-board hydrogen production system is its high cost. Hence, the reproduction of NaBH4 from byproducts that precipitate after hydrolysis is an important strategy to make its use more cost effective. In this work, we focused on the optimization of thermochemical NaBH4 reproduction reaction in a large-scaled reactor (∼100 ml), and we investigated the effects of the reaction temperature (400–600 °C) and H2 pressure (30–60 bar) on the NaBH4 conversion yield using Mg as a reducing agent. The conversion yield of NaBO2 to NaBH4 increased with an increase in H2 pressure to 55 bar and then decreased slightly at 60 bar. The yield increased with an increase in the reactor temperature from 400 to 600 °C. The maximum yield was 69% at 55 bar and 600 °C using homogenized reactants by ball-milling for 1 h under an Ar atmosphere. Though Ca as a reducing agent makes the thermochemical reproduction reaction more favorable, the NaBH4 yield was low after 1 h of production at 55 bar and 600 °C. This result may be due to the fact that Ca is not as effective as Mg in catalyzing the conversion of hydrogen gas to protide (H), which can substitute oxygen actively in NaBO2.  相似文献   

7.
Supported Co catalysts with different supports were prepared for hydrogen generation (HG) from catalytic hydrolysis of alkaline sodium borohydride solution. As a result, we found that a γ-Al2O3 supported Co catalyst was very effective because of its special structure. A maximum HG rate of 220 mL min−1 g−1 catalyst and approximately 100% efficiency at 303 K were achieved using a Co/γ-Al2O3 catalyst containing 9 wt.% Co. The catalyst has quick response and good durability to the hydrolysis of alkaline NaBH4 solution. It is feasible to use this catalyst in hydrogen generators with stabilized NaBH4 solutions to provide on-site hydrogen with desired rate for mobile applications, such as proton exchange membrane fuel cell (PEMFC) systems.  相似文献   

8.
Catalyst selection, deposition method and substrate material selection are essential aspects for the design of efficient electrodes for fuel cells. Research is described to identify a potential catalyst for hydrogen peroxide reduction, an effective catalyst deposition method, and supporting material for a direct borohydride/hydrogen peroxide fuel cell. Several conclusions are reached. Using Pourbaix diagrams to guide experimental testing, gold is identified as an effective catalyst which minimizes gas evolution of hydrogen peroxide while providing high power density. Activated carbon cloth which features high surface area and high microporosity is found to be well suited for the supporting material for catalyst deposition. Electrodeposition and plasma sputtering deposition methods are compared to conventional techniques for depositing gold on diffusion layers. Both methods provide much higher power densities than the conventional method. The sputtering method however allows a much lower catalyst loading and well-dispersed deposits of nanoscale particles. Using these techniques, a peak power density of 680 mW cm−2 is achieved at 60 °C with a direct borohydride/hydrogen peroxide fuel cell which employs palladium as the anode catalyst and gold as the cathode catalyst.  相似文献   

9.
In the literature a mathematical model has been developed for the direct borohydride fuel cells by Verma et al. [1]. This model simply simulates the fuel cell system via kinetic mechanisms of the borohydride and oxygen. Their mathematical expression contains the activation losses caused by the oxidation of the borohydride and the concentration overpotential increased by the reduction of oxygen. In this study a direct borohydride/peroxide fuel cell has been constructed using hydrogen peroxide (H2O2) as oxidant instead of the oxygen. Therefore we created an advanced model for peroxide fuel cells, including the activation overpotential of the peroxide. The goal of our model is to provide the information about the peroxide reduction effect on the cell performance. Our comprehensive mathematical model has been developed by taking Verma’s model into account. KH2O2 used in the advanced model was calculated as 6.72 × 10−4 mol cm−2 s−1 by the cyclic voltammogram of Pt electrode in the acidic peroxide solution.  相似文献   

10.
Novel composites consisting of cobalt–boron (CoB) catalyst and sodium borohydride (NaBH4) implantation in polymers (polyethylene glycol (PEG) or sodium alginate) were prepared for portable hydrogen production. The CoB catalyst was synthesized by the reduction of cobalt salt in NaBH4 solution followed by heat treatment in nitrogen atmosphere. The catalyst was embedded in PEG gel or alginate beads and NaBH4 was directly added in PEG–dimethylformamide (DMF) gel and adsorbed in alginate beads. It is noted that the composites prepared are stable in dry air and can be easily used for hydrogen production. A rate of hydrogen production of 750 ml min−1 g−1 was reached when simply putting the composites into pure water. The humidified pure hydrogen can be used conveniently for fuel cells.  相似文献   

11.
The catalyst with high activity and durability plays a crucial role in the hydrogen generation systems for the portable fuel cell generators. In the present study, a ruthenium supported on graphite catalyst (Ru/G) for hydrogen generation from sodium borohydride (NaBH4) solution is prepared by a modified impregnation method. This is done by surface pretreatment with NH2 functionalization via silanization, followed by adsorption of Ru (III) ion onto the surface, and then reduced by a reducing agent. The obtained catalyst is characterized by transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Very uniform Ru nanoparticles with sizes of about 10 nm are chemically bonded on the graphite surface. The hydrolysis kinetics measurements show that the concentrations of NaBH4 and NaOH all exert considerable influence on the catalytic activity of Ru/G catalyst towards the hydrolysis reaction of NaBH4. A hydrogen generation rate of 32.3 L min−1 g−1 (Ru) in a 10 wt.% NaBH4 + 5 wt.% NaOH solution has been achieved, which is comparable to other noble catalysts that have been reported.  相似文献   

12.
In this paper, sodium borohydride (NaBH4) is examined as a method of hydrogen storage and transport, and compared with hydrogen obtained from fossil sources. This chemical hydride has a very high storage density capability due to its large hydrogen content. Hydrogen is released as the main product of the reaction of NaBH4 with water, with sodium metaborate (NaBO2) as a by-product. The main disadvantage of the process is the production cost of the borohydride.  相似文献   

13.
In this study, direct borohydride fuel cells (DBFCs) potentialities are evaluated. These emerging systems make it possible to reach maximum powers of about 200 mW cm−2 at room temperature and ambient air (natural convection) with high concentrated borohydride solutions. On the other hand, a part of borohydride hydrolyses during cell operating which leads to hydrogen formation and fuel loss: the practical capacity represents about only 18% of the theoretical one. In order to improve fuel efficiency, thiourea is tested as an inhibitor of the catalytic hydrolysis associated with BH4 electro-oxidation on Pt. The practical capacity is drastically improved: it represents about 64% of the theoretical one. Against, electrochemical performances (IE curves) are affected by the presence of thiourea.  相似文献   

14.
A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.  相似文献   

15.
In this work, the effects of sodium borohydride concentration on the performance of direct borohydride fuel cell, which consisted of Pd/C anode, Pt/C cathode and Na+ form Nafion® membrane as the electrolyte, have been investigated in steady state/steady-flow and uniform state/uniform-flow systems. The experimental results have revealed that the power density increased as the sodium borohydride concentration increased in the SSSF system. Peak power densities of 7.1, 10.1 and 11.7 mW cm−2 have been obtained at 0.5, 1 and 1.5 M, respectively. However, the performance has decreased when the sodium borohydride concentration has been increased, and the fuel utilization ratios of 29.8%, 21.6% and 20.4% have been obtained at 0.5, 1 and 1.5 M, respectively in the USUF system.  相似文献   

16.
A direct borohydride fuel cell (DBFC) is constructed using a cathode based on iron phthalocyanine (FePc) catalyst supported on active carbon (AC), and a AB5-type hydrogen storage alloy (MmNi3.55Co0.75Mn0.4Al0.3) was used as the anode catalyst. The electrochemical properties are investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV), etc. methods. The electrochemical experiments show that FePc-catalyzed cathode not only exhibits considerable electrocatalytic activity for oxygen reduction in the BH4 solutions, but also the existence of BH4 ions has almost no negative influences on the discharge performances of the air-breathing cathode. At the optimum conditions of 6 M KOH + 0.8 M KBH4 and room temperature, the maximal power density of 92 mW cm−2 is obtained for this cell with a discharge current density of 175 mA cm−2 at a cell voltage of 0.53 V. The new type alkaline fuel cell overcomes the problem of the conventional fuel cell in which both noble metal catalysts and expensive ion exchange membrane were used.  相似文献   

17.
A new poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) composite polymer membrane was synthesized using a solution casting method. Alkaline direct borohydride fuel cells (DBFCs), consisting of an air cathode based on MnO2/C inks on Ni-foam, anodes based on PtRu black and Au catalysts on Ni-foam, and the PVA/HAP composite polymer membrane, were assembled and investigated for the first time. It was demonstrated that the alkaline direct borohydride fuel cell comprised of this low-cost PVA/HAP composite polymer membrane showed good electrochemical performance. As a result, the maximum power density of the alkaline DBFC based on the PtRu anode (45 mW cm−2) proved higher than that of the DBFC based on the Au anode (33 mW cm−2) in a 4 M KOH + 1 M KBH4 solution at ambient conditions. This novel PVA/HAP composite polymer electrolyte membrane with high ionic conductivity at the order of 10−2 S cm−1 has great potential for alkaline DBFC applications.  相似文献   

18.
Hydrogen and ammonia are both potential energy carriers being considered for large scale energy transport. Sodium borohydride (NaBH4) has been widely applied as a potential solid-state hydrogen storage material. It can produce hydrogen gas and sodium metaborate (NaBO2) after hydrolysis with water at room temperature. The regeneration of NaBH4 from NaBO2 could significantly reduce the cost of NaBH4 and enable its wide-spread industrial use. In this work, we demonstrate a simple method for regenerating NaBH4 from NaBO2·4H2O using Mg2N3, which combines NaBH4 production with NH3 gas production in a single step at room temperature. NaBH4 is successfully synthesized from NaBO2·4H2O using the Mg3N2 reducing agent via ball milling under a hydrogen atmosphere. NaBH4 is formed at a 76.6% yield by planetary ball milling at 600 rpm under 40 bar hydrogen for 12 h. NH3 gas is also formed, which can be easily separated from the solid products. Therefore, this one-step process could produce two different types of carbon-free hydrogen carriers suitable for energy export from renewable sources.  相似文献   

19.
A comprehensive review of direct borohydride fuel cells   总被引:2,自引:0,他引:2  
A direct borohydride fuel cell (DBFC) is a device that converts chemical energy stored in borohydride ion (BH4) and an oxidant directly into electricity by redox processes. Usually, a DBFC employs an alkaline solution of sodium borohydride (NaBH4) as fuel and oxygen or hydrogen peroxide as oxidant. DBFC has some attractive features such as high open circuit potential, ease of electro-oxidation of BH4 on non-precious metals such as nickel, low operational temperature and high power density. The DBFC is a promising power system for portable applications. This article discusses prominent features of DBFC, reviews recent developments in DBFC research, and points out future directions in DBFC research.  相似文献   

20.
The carbon-supported Pt-modified Au nanoparticles were prepared by two different chemical reduction processes, the simultaneous chemical reduction of Pt and Au on carbon process (A-AuPt/C) and the successive reduction of Au then Pt (B-AuPt/C) on carbon process. These two catalysts were investigated as the anode catalysts for a direct borohydride fuel cell (DBFC) and Au nanoparticles on carbon (Au/C) were also prepared for comparison. The DBFC with B-AuPt/C as the anode catalyst shows the best anode and fuel cell performance. The maximum power density with the B-AuPt/C catalyst is 112 mW cm−2 at 40 °C, compared to 97 mW cm−2 for A-AuPt/C and 65 mW cm−2 for Au/C. In addition, the DBFC with the B-AuPt/C catalyst shows the best fuel utilization with a maximum apparent number of electrons (Napp) equal to 6.4 in 1 M NaBH4 and 7.2 in 0.5 M NaBH4 as compared to the value of Napp of 8 for complete utilization of borohydride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号