首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ternary imide Li2Mg(NH)2 is considered to be one of the most promising on-board hydrogen storage materials due to its high reversible hydrogen capacity of 5.86 wt%, favorable thermodynamic properties and good cycling stability. In this work, Li2Mg(NH)2 was synthesized by dynamically dehydrogenating a mixture of Mg(NH2)2–2LiH up to 280 °C under different gas (Ar and H2) and pressures (0–9.0 bar). The crystal structure of Li2Mg(NH)2 was found to depend on the gas back pressure in the dehydrogenation process. The crystal structure of Li2Mg(NH)2 and the dehydrogenation/rehydrogenation properties of the Mg(NH2)2–2LiH system strongly depend on the gas back pressure in the dehydrogenation process due to the effect of the pressure on the dehydrogenation kinetics. This study provides a new approach for improving the hydrogen storage properties of the amide–hydride systems.  相似文献   

2.
A statistical theory of the structural phase transformations of the imide Li2Mg(NH)2 has been developed, the formation of which is accompanied by the release of free hydrogen. The standard Gibbs free energy formation of the imide's three phases: α, β, γ are calculated. Their dependencies on composition, temperature, pressure, and energy are found. Plots of concentration dependences of the free energy values of these phases are constructed for different temperatures, according to which the imide state diagram is established. Isotherms, isobars and isoplets are investigated. The possibility of hysteresis effect for α and β phases is shown. The results of the calculations are compared with the experimental data.  相似文献   

3.
A novel dual-cation/anion complex hydride (Li2Mg(BH4)2(NH2)2), which contains a theoretical hydrogen capacity of 12.1 wt%, is successfully synthesized for the first time by ball milling a mixture consisting of MgBH4NH2 and Li2BH4NH2. The prepared Li2Mg(BH4)2(NH2)2 crystallizes in a triclinic structure, and the [NH2] and [BH4] groups remain intact within the structure. Upon heating, the prepared Li2Mg(BH4)2(NH2)2 decomposes to release approximately 8.7 wt% hydrogen in a three-step reaction at 100–450 °C. In addition, a small amount of ammonia is evolved during the first and second thermal decomposition steps as a side product. This ammonia is responsible for the lower experimental dehydrogenation amount compared to the theoretical hydrogen capacity. The XRD and FTIR results reveal that Li2Mg(BH4)2(NH2)2 first decomposes to LiMgBN2, LiBH4, BN, LiH and MgBNH8 at 100–250 °C, and then, the newly formed MgBNH8 reacts with LiH to form Mg, LiBH4 and BN at 250–340 °C. Finally, the decomposition of LiBH4 releases hydrogen and generates LiH and B at 340–450 °C.  相似文献   

4.
In this paper, we describe and discuss the synthesis, structural-microstructural and hydrogen storage behaviour of three AB2 type storage materials namely (a) ZrFe2, (b) Zr(Fe0.75V0.25)2 and (c) Zr(Fe0.5V0.5)2. These alloys were synthesied by radio frequency induction melting in argon atmosphere. X-ray diffraction and transmission electron microscope have been employed for structural and microstructural characterizations. The XRD study reveals that the lattice constants and the unit cell volume of ZrFe2, Zr (Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 alloys, which has C14 type hexagonal Laves phase. The Surface morphology and elemental composition of these alloys were investigated by scanning electron microscope and energy dispersive X-ray analysis. The pressure composition isotherms of these alloys were investigated at room temperature and pressure ranges of 0–100 atm respectively, measured through a fully computerized PCI apparatus. As we increase the concentration of V (substituted for Fe), the total hydrogen storage capacities increased up to 1.45 wt%. This capacity is achieved in Zr(Fe0.5V0.5)2 alloy, while the reversible hydrogen storage capacity decreases due to the formation of a stable hydride phase. It has been found that the lattice constants increase with higher vanadium concentration. This is indicating that the majority of vanadium atoms reside in the B-site. The broader X-ray diffraction peaks observed in Zr(Fe0.5V0.5)2 alloy indicates a higher degree of disorder for alloys with the higher V-content. The yet another interesting feature observed in our present study is that the plateau pressure remains well below 1 atm for all the compositions.  相似文献   

5.
To improve the hydrogen storage property of LiBH4, the LiBH4/Ca(AlH4)2 reactive systems with various ratios were constructed, and their de-/hydrogenation properties as well as the reaction mechanisms were investigated experimentally. It was found that the sample with the LiBH4 to Ca(AlH4)2 molar ratio of 6:1 exhibits the best comprehensive hydrogen storage properties, desorbing hydrogen completely (8.2 wt.%) within 35 min at 450 °C and reversibly absorbing 4.5 wt.% of hydrogen at 450 °C under a hydrogen pressure as low as 4.0 MPa. During the first dehydrogenation process of the LiBH4/Ca(AlH4)2 systems, the CaH2 and Al particles were in situ precipitated via the self-decomposition of Ca(AlH4)2, and then reacted with LiBH4 to form CaB6, AlB2 and LiH. Whereafter, the sample can cycle between LiBH4 + Ca(BH4)2 + Al in the hydrogenated state and CaB6 + AlB2 + LiH in the dehydrogenated state.  相似文献   

6.
The hydrogen storage properties and mechanisms of the Ca(BH4)2-added 2LiNH2–MgH2 system were systematically investigated. The results showed that the addition of Ca(BH4)2 pronouncedly improved hydrogen storage properties of the 2LiNH2–MgH2 system. The onset temperature for dehydrogenation of the 2LiNH2–MgH2–0.3Ca(BH4)2 sample is only 80 °C, a ca. 40 °C decline with respect to the pristine sample. Further hydrogenation examination indicated that the dehydrogenated 2LiNH2–MgH2–0.1Ca(BH4)2 sample could absorb ca. 4.7 wt% of hydrogen at 160 °C and 100 atm while only 0.8 wt% of hydrogen was recharged into the dehydrogenated pristine sample under the same conditions. Structural analyses revealed that during ball milling, a metathesis reaction between Ca(BH4)2 and LiNH2 firstly occurred to convert to Ca(NH2)2 and LiBH4, and then, the newly developed LiBH4 reacted with LiNH2 to form Li4(BH4)(NH2)3. Upon heating, the in situ formed Ca(NH2)2 and Li4(BH4)(NH2)3 work together to significantly decrease the operating temperatures for hydrogen storage in the Ca(BH4)2-added 2LiNH2–MgH2 system.  相似文献   

7.
The phase structure and hydrogenation behavior of the (Sr1−xCax)2Al (x = 0.5, 0.6, 0.7, 0.8 and 0.9) alloys were investigated. It was found that the (Sr1−xCax)2Al alloys have different phase components with the change of Ca content. When x = 0.6 and 0.7, the single (Sr, Ca)2Al phase can be obtained. The lattice parameters of (Sr, Ca)2Al compound in the (Sr1−xCax)2Al alloys decrease gradually with the increase of Ca content. The (Sr, Ca)2Al phase can absorb hydrogen even at 303 K. During hydrogenation, the (Sr, Ca)2Al compound transforms into distinct phases at different temperatures.  相似文献   

8.
The decreased dehydrogenation temperature and improved dehydrogenation kinetics were achieved by high-energy ball milling Mg(AlH4)2. The particle size, grain size, microstrain and lattice distortion of the post-milled samples, i.e., from macro- to micro-scale, were systematically characterized by means of SEM and XRD measurements. The results indicated that the high-energy ball milling process led to not only a decrease in the particle size and grain size but also an increase in the microstrain and lattice distortion, which provides a synergetic effect of the thermodynamics and kinetics on lowering the dehydrogenation temperatures of the post-milled Mg(AlH4)2 samples. From the kinetic point of view, the refinement of the particles and grains shortens the diffusion distance, and the increase of the microstrain and lattice distortion enhances the diffusivity, which work together to decrease the apparent activation energy for hydrogen desorption. Besides, the presence of microstrain and lattice distortion increased the free energy of the post-milled samples, which was released by recovery and recrystallization processes upon heating. This offers more heat release during the first-step dehydrogenation, consequently leading to thermodynamically decline in dehydrogenation temperatures of the post-milled samples. Such a finding provides insights into the mechanistic understanding on decreased dehydrogenation temperature and improved dehydrogenation kinetics of the post-milled metal hydrides as hydrogen storage materials.  相似文献   

9.
A significant decrease in the dehydrogenation temperature of Mg(AlH4)2 was achieved by low-energy ball milling with TiF4. Approximately 8.0 wt% of hydrogen was released from the Mg(AlH4)2-0.025TiF4 sample with an on-set temperature of 40 °C, which represents a decrease of 75 °C relative to pristine Mg(AlH4)2. In contrast to the three-step reaction for pristine Mg(AlH4)2, hydrogen desorption from the TiF4-doped sample involves a two-step process because the Ti-based species participates in the dehydrogenation reaction. The presence of TiF4 alters the nucleation and growth of the dehydrogenation product, significantly decreasing the activation energy barrier of the first step in the dehydrogenation of Mg(AlH4)2. Further hydrogenation measurements revealed that the presence of the Ti-based species was also advantageous for hydrogen uptake, as the on-set hydrogenation temperature was only 100 °C for the dehydrogenated TiF4-doped sample, compared with 130 °C for the additive-free sample.  相似文献   

10.
Manganese borohydride (Mn(BH4)2) was successfully synthesized by a mechano-chemical activation synthesis (MCAS) from lithium borohydride (LiBH4) and manganese chloride (MnCl2) by applying high energy ball milling for 30 min. For the first time a wide range of molar ratios n = 1, 2, 3, 5, 9 and 23 in the (nLiBH4 + MnCl2) mixture was investigated. During ball milling for 30 min the mixtures release only a very small quantity of H2 that increases with the molar ratio n but does not exceed ∼0.2 wt.% for n = 23. However, longer milling duration leads to more H2 released. For the equimolar ratio n = 1 the principal phases synthesized are Li2MnCl4, an inverse cubic spinel phase, and the Mn(BH4)2 borohydride. For n = 2 a LiCl salt is formed which coexists with Mn(BH4)2. With the n increasing from 3 to 23 LiBH4 is not completely reacted and its increasing amount is retained in the microstructure coexisting with LiCl and Mn(BH4)2. Gas mass spectrometry during Temperature Programmed Desorption (TPD) up to 450 °C shows the release of hydrogen as a principal gas with a maximum intensity around 130–150 °C accompanied by a miniscule quantity of borane B2H6. The intensity of the B2H6 peak is 200–600 times smaller than the intensity of the corresponding H2 peak. In situ heating experiments using a continuous monitoring during heating show no evidence of melting of Mn(BH4)2 up to about 270–280 °C. At 100 °C under 1 bar H2 pressure the ball milled n = 2 and 3 mixtures are capable of desorbing quite rapidly ∼4 wt.% H2 which is a very large amount of H2 considering that the mixture also contains 2 mol of LiCl salt. The H2 quantities experimentally desorbed at 100 and 200 °C do not exceed the maximum theoretical quantities of H2 expected to be desorbed from Mn(BH4)2 for various molar ratios n. It clearly confirms that the contribution from B2H6 evolved is negligibly small (if any) when desorption occurs isothermally in the practical temperature range 100–200 °C. It is found that the ball milled mixture with the molar ratio n = 3 exhibits the highest rate constant k and the lowest apparent activation energy for dehydrogenation, EA ∼ 102 kJ/mol. Decreasing or increasing the molar ratio n below or above 3 increases the apparent activation energy. Ball milled mixtures with the molar ratio n = 2 and 3 discharge slowly H2 during storage at room temperature and 40 °C. The addition of 5 wt.% nano-Ni with a specific surface area of 60.5 m2/g substantially enhances the rate of discharge at 40 °C.  相似文献   

11.
The various Mg–B–Al–H systems composed of Mg(BH4)2 and different Al-sources (metallic Al, LiAlH4 and its decomposition products) have been investigated as potential hydrogen storage materials. The role of Al was studied on the dehydrogenation and the rehydrogenation of the systems. The results indicate that the different Al-sources exhibit a similar improving effect on the dehydrogenation properties of Mg(BH4)2. Taking the Mg(BH4)2 + LiAlH4 system as an example, at first LiAlH4 rapidly decomposes into LiH and Al, then Mg(BH4)2 decomposes into MgH2 and B, finally the MgH2 reacts with Al, LiH and B, which forms Mg3Al2 and MgAlB4. The system starts to desorb H2 at 140 °C and desorbs 3.6 wt.% H2 below 300 °C, while individual Mg(BH4)2 starts to desorb H2 at 250 °C and desorbs only 1.3 wt.% H2 below 300 °C. The isothermal desorption kinetics of the Mg–B–Al–H systems is about 40% faster than that of Mg(BH4)2 at the hydrogen desorption ratio of 90%. In addition, the Mg–B–Al–H systems show partial reversibility at moderate temperature and pressure. For Al-added system, the product of rehydrogenation is MgH2, while for LiAlH4-added system the product is composed of LiBH4 and MgH2.  相似文献   

12.
Chou model was used to analyze the influences of LaNi5 content, preparation method, temperature and initial hydrogen pressure on the hydriding kinetics of Mg-LaNi5 composites. Higher LaNi5 content could improve hydriding kinetics of Mg but not change hydrogen diffusion as the rate-controlling step, which was validated by characteristic reaction time tc. The rate-controlling step was hydrogen diffusion in the hydriding reaction of Mg-30 wt.% LaNi5 prepared by microwave sintering (MS) and hydriding combustion synthesis (HCS), and surface penetration was the rate-controlling step of sample prepared by mechanical milling (MM). Rising temperature and initial hydrogen pressure could accelerate the absorption rate. The rate-controlling step of Mg-30 wt.% LaNi5 remained hydrogen diffusion at temperatures ranging from 302 to 573 K, while that of Mg-50 wt.% LaNi5 changed from surface penetration to hydrogen diffusion with increasing initial hydrogen pressure ranging from 0.2 to 1.5 MPa. Apparent activation energies of absorption for Mg-30 wt.% LaNi5 prepared by MS and MM were respectively 25.2 and 28.0 kJ/mol H2 calculated by Chou model. Kinetic curves fitted and predicted by Chou model using temperature and hydrogen pressure were well exhibited.  相似文献   

13.
The hydriding process of the 2LiH + MgB2 mixture is controlled by outward diffusion of Mg and inward diffusion of Li and H within MgB2 crystals to form LiBH4. This study explores the feasibility of using transition metal dopants, such as Mn and V, to enhance the diffusion rate and thus the hydriding kinetics. It is found that Mn can indeed enhance the hydriding kinetics of the 2LiH + MgB2 mixture, while V does not. The major factor in enhancing the diffusion rate and thus the hydriding kinetics is related to the dopant's ability to induce the lattice distortion of MgB2 crystals. This study demonstrates that the kinetics of the diffusion controlled solid-state hydriding process can be improved by doping if the dopant is properly selected.  相似文献   

14.
Na-doped Li3−xNaxV2(PO4)3/C (x = 0.00, 0.01, 0.03, and 0.05) compounds have been prepared by using sol-gel method. The Rietveld refinement results indicate that single-phase Li3−xNaxV2(PO4)3/C with monoclinic structure can be obtained. Among three Na-doped samples and the undoped one, Li2.97Na0.03V2(PO4)3/C sample has the highest electronic conductivity of 6.74 × 10−3 S cm−1. Although the initial specific capacities for all Na-doped samples have no much enhancement at the current rate of 0.2 C, both cycle performance and rate capability have been improved. At the 2.0 C rate, Li2.97Na0.03V2(PO4)3/C presents the highest initial capacity of 118.9 mAh g−1 and 12% capacity loss after 80 cycles. The partial substitution of Li with Na (x = 0.03) is favorable for electrochemical rate and cyclic ability due to the enlargement of Li3V2(PO4)3 unit cells, optimizing the particle size and morphology, as well as resulting in a higher electronic conductivity.  相似文献   

15.
Metal organic frameworks (MOF) are a type of nanoporous materials with large specific surface area, which are especially suitable for gas separation and storage. In this work, we report a new approach of crosslinking UiO-66-(OH)2 to enhance its hydrogen storage capacity. UiO-66-(OH)2 was synthesized using hafnium tetrachloride (HfCl4) and 2, 5-dihydroxyterephthalic acid (DTPA) through a canonical modulated hydrothermal method (MHT), followed by a post-synthesis modification, which is to form a crosslinking structure inside the porous structure of UiO-66-(OH)2. During the modification process, the phenolic hydroxyl groups on the UiO-66-(OH)2 reacted with methanal, and HCl aqueous solution and triethylamine served as catalyst (the products denoted as UiO-66-H and UiO-66-T, respectively). Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), 13C nuclear magnetic resonance spectroscopy (13C NMR) proved that the crosslinking was formed. The BET specific surface area and the average adsorption pore size of UiO-66-H and UiO-66-T significantly increased after modification. The hydrogen storage capacity of UiO-66-H reached a maximum of 3.37 wt% (16.87 mmol/g) at 77 K, 2 MPa. Hydrogen adsorption enthalpy of UiO-66-T was 0.986 kJ/mol, which was higher than that of UiO-66-(OH)2 (0.695 kJ/mol). This work shows that UiO-66-(OH)2 is a promising candidate for potential application in high-performance hydrogen storage.  相似文献   

16.
Complex hydride Mg(BH4)(NH2), which consists of double anion BH4 and NH2, was synthesized and the crystal structure was analyzed by synchrotron X-ray diffraction. The mixture sample of Mg(BH4)2 + Mg(NH2)2 prepared by ball milling was reacted and crystallized to Mg(BH4)(NH2) by heating at about 453 K. This crystal phase transforms into amorphous phase above 473 K and subsequently the dehydrogenation begins. The crystal structure of Mg(BH4)(NH2) was determined from measurement data at 453 K (chemical formula: Mg0.94(BH4)1(NH2)0.88, crystal system: tetragonal, space group: I41 (No.80), Z = 8, lattice constants: a = 5.814(1), c = 20.450(4) Å at 453 K). Mg(BH4)(NH2) is ionic crystal which the cation (Mg2+) and the anions (BH4 and NH2) are stacking alternately along the c-axis direction. Two BH4 and two NH2 tetrahedrally coordinate around Mg2+ ion.  相似文献   

17.
The hydrogen storage systems Li3AlN2 and Li3FeN2 were synthesized mechanochemically by two different routes. In each case an intermediate material formed after milling, which transformed into Li3MN2 (M = Al or Fe) upon annealing. The synthesis route had a measurable effect on the hydrogen storage properties of the material: Li3AlN2 prepared from hydrogenous starting materials (LiNH2 and LiAlH4) performed better than that synthesized from non-hydrogenous materials (Li3N and AlN). For both Li3AlN2 materials, the hydrogen storage capacity and the absorption kinetics improved significantly upon cycling. Ti-doped Li3AlN2 synthesized from LiNH2 and LiAlH4 showed the best hydrogen storage characteristics of all, with the best kinetics for hydrogen uptake and release, and the highest hydrogen storage capacity of 3.2 wt.%, of which about half was reversible. Meanwhile, Li3FeN2 synthesized from Li3N and Fe displayed similar kinetics to that synthesized from Li3N and FexN (2 ≤ x ≤ 4), but demonstrated lower gravimetric hydrogen storage capacities. Li3FeN2 displayed a hydrogen uptake capacity of 2.7 wt.%, of which about 1.5 wt.% was reversible. For both Li3AlN2 and Li3FeN2, doping with TiCl3 resulted in enhancement of hydrogen absorption kinetics. This represents the first study of a ternary lithium-transition metal nitride system for hydrogen storage.  相似文献   

18.
A two-step ball-milling method has been provided to synthesize Mg(BH4)2 using NaBH4 and MgCl2 as starting materials. The method offers high yield and high purity (96%) of the compound. The as-synthesized Mg(BH4)2 is then combined with LiAlH4 by ball-milling in order to form new multi-hydride systems with high hydrogen storage properties. The structure, the dehydrogenation and the reversibility of the combined systems are studied. Analyses show that a metathesis reaction takes place between Mg(BH4)2 and LiAlH4 during milling, forming Mg(AlH4)2 and LiBH4. Mg(BH4)2 is excessive and remains in the ball-milled product when the molar ratio of Mg(BH4)2 to LiAlH4 is over 0.5. The onset dehydrogenation temperature of the combined systems is lowered to ca. 120 °C, which is much lower than that of either Mg(BH4)2 or LiAlH4. The dehydrogenation capacities of the combined systems below 300 °C are all higher than that of both Mg(BH4)2 and LiAlH4. The combined systems are reversible for hydrogen storage at moderate hydrogenation condition, and rapid hydrogenation occurred within the initial 30 min. Moreover, the remained Mg(BH4)2 in the combined systems is found also partially reversible. The mechanism of the enhancement of the hydrogen storage properties and the dehydrogenation/hydrogenation process of the combined systems were discussed.  相似文献   

19.
Mg(AlH4)2 submicron rods with 96.1% purity have been successfully synthesized in a modified mechanochemical reaction process followed by Soxhlet extraction. ∼9.0 wt% of hydrogen is released from the as-prepared Mg(AlH4)2 at 125–440 °C through a stepwise reaction. Upon dehydriding, Mg(AlH4)2 decomposes first to generate MgH2 and Al. Subsequently, the newly produced MgH2 reacts with Al to form a Al0.9Mg0.1 solid solution. Finally, further reaction between the Al0.9Mg0.1 solid solution and the remaining MgH2 gives rise to the formation of Al3Mg2. The first step dehydrogenation is a diffusion-controlled reaction with an apparent activation energy of ∼123.0 kJ/mol. Therefore, increasing the mobility of the species involved in Mg(AlH4)2 will be very helpful for improving its dehydrogenation kinetics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号