首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 7 毫秒
1.
The chemically cross-linked gel polymer electrolytes supported by the microporous polyethylene membrane were prepared for application in lithium-ion polymer cells. The chemical cross-linking by star-shaped siloxane acrylate allowed to encapsulate an electrolyte solution in the porous membrane and also promote strong interfacial adhesion between the electrodes and the membrane. Lithium-ion polymer cells composed of a mesocarbon microbead anode and a lithium–cobalt oxide cathode were assembled by using in situ chemical cross-linking method, and their charge/discharge cycling performances were evaluated. Effect of the cross-linking agent content on cycling performances of the cells has been investigated.  相似文献   

2.
For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn2O4-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16–20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF6 in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at −60 °C using a C/20 discharge rate with cells containing 1.0 M LiPF6 in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF6 in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at −40 °C, while still maintaining a voltage >2.5 V at 100 and 80% state-of-charge (SOC).  相似文献   

3.
Gel polymer electrolytes containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and a small amount of additive (vinylene carbonate, fluoroethylene carbonate, and ethylene carbonate) are prepared, and their electrochemical properties are investigated. The cathodic limit of the gel polymer electrolytes can be extended to 0 V vs. Li by the formation of a protective solid electrolyte interphase on the electrode surface. Using these gel polymer electrolytes, lithium metal polymer cells composed of a lithium anode and a LiNi1/3Co1/3Mn1/3O2 cathode are assembled, and their cycling performances are evaluated at room temperature. The cells show good cycling performance, comparable to that of a cell assembled with gel polymer electrolyte containing standard liquid electrolyte (1.0 M LiPF6 in ethylene carbonate/diethylene carbonate). Flammability tests and differential scanning calorimetry studies show that the presence of the ionic liquid in the gel polymer electrolyte considerably improves the safety and thermal stability of the cells.  相似文献   

4.
A hybrid composite membrane is prepared by electrospinning poly(vinylidene fluoride-co-chlorotrifluoroethylene) copolymer and Al2O3 powder with a microfibrous form on both sides of a polyethylene membrane. The composite membrane shows better thermal stability and wettability for liquid electrolyte solution than polyethylene membrane. The lithium-ion cell assembled with the composite membrane exhibits good capacity retention and high rate performance due to the effective encapsulation of the electrolyte solution in the cell and the adhesive properties of the swollen polymer towards electrodes. The hybrid composite membrane prepared by the electrospinning method is expected to be a separator with enhanced thermal stability and good cycling performance for application in lithium-ion batteries.  相似文献   

5.
ZnO-coated LiCoO2 particles are prepared by plasma-enhanced chemical vapour deposition (PE-CVD) in a coating range from 0.08 to 0.49 wt.%, and examined using field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and atomic absorption spectroscopy (AAS), with particular focus on surface characteristics. From charge-discharge cycling tests in the range of 3.0–4.5 V, the ZnO coating has little effect on the discharge capacity in the first few cycles, but the coating effectively improves the capacity retention after prolonged cycling. In the experimental range studied, the optimum amount of ZnO coating which maximizes the capacity retention is found to be 0.21 wt.%. An excessive amount of ZnO coating causes a decrease in both cyclic performance and thermal stability. The possible reasons for enhanced cycleability and thermal stability afforded by the ZnO coating are discussed from the viewpoint of the surface morphology of the bare and coated LiCoO2 particles and their impedance spectra.  相似文献   

6.
A promising solid polymer blend electrolyte is prepared by blending of poly(ethylene oxide) (PEO) with different content of amorphous poly(propylene carbonate) (PPC), in which the amorphous property of PPC is utilized to enhance the amorphous/free phase of solid polymer electrolyte, so as to achieve the purpose of modifying PEO-based solid polymer electrolyte. It indicates that the blending of PEO with PPC can effectively reduce the crystallization and increase the ion conductivity and electrochemical stability window of solid polymer electrolyte. When the content of PPC reaches 50%, the ionic conductivity reaches the maximum, which is 2.04 × 10−5 S cm−1 and 2.82 × 10−4 S cm−1 at 25°C and 60°C, respectively. The electrochemical stability window increases from 4.25 to 4.9 V and the interfacial stability of lithium metal anode is also greatly improved. The solid-state LiFePO4//Li battery with the PEO/50%PPC blend solid polymer electrolyte has good cycling stability, which the maximum discharge specific capacity is up to 125 mAh g−1 at a charge/discharge current density of 0.5 C at 60°C.  相似文献   

7.
A PVdF-HFP/PEG/PEGDMA cross-linking film has been prepared as the electrolyte for dye-sensitized solar cell (DSSC). The film can be made porous by controlling the evaporation behavior of solvents. Room temperature ionic conductivity of the micro-porous film exceeds 1 mS/cm. In addition, we also evaluated the significance of cell gap in DSSC by analyzing the impedance spectroscopy of the cell with polymer electrolyte. Finally, by decreasing the film thickness, the DSSC equipped with 11 μm, micro-porous and cross-linked film showed a conversion efficiency over 4% and 5% under 1 and 0.16 Sun, respectively.  相似文献   

8.
Mixing a small amount of Al(OH)3 powder with a LiCoO2 cathode material is demonstrated to improve markedly the cycle performance and thermal stability of commercial grade LiCoO2/graphite lithium-ion batteries. Al(OH)3-mixed LiCoO2/graphite prismatic cells exhibit excellent capacity retention as high as 95% after 400 cycles with negligible polarization build-up. Moreover, the thermal stability of the cells is greatly improved by Al(OH)3 mixing, which is confirmed by higher residual and recovery capacity ratios after storage at 90 °C compared with a pristine cell. The beneficial effects of Al(OH)3 are found to be related mainly to an improvement of the cathode side, which is ascribed to reduced unwanted side-reactions with the electrolyte.  相似文献   

9.
A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) and LiBF4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF4. A porous poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage–power sources with enhanced safety.  相似文献   

10.
This paper reports the effect of using a mixed iodide salt system with two dissimilar cations to enhance the efficiency of dye-sensitized solar cells made with polyvinylidenefluoride (PVdF) based gel electrolyte. Instead of a single iodide salt, a mixture of potassium iodide (KI) with a small K+ cation and tetrapropylammonium iodide (Pr4NI) with a bulky Pr4N+ cation were used to provide the required iodide ion conductivity. Solar cells of configuration FTO/TiO2/Dye/electrolyte/Pt/FTO were fabricated using a mesoporous TiO2 electrode sensitized with a Ruthenium dye (N719). With identical electrolyte compositions, the cells with KI and Pr4NI alone gave efficiencies of 2.37% and 2.90% respectively. The cell with the mixed iodide system, KI:Pr4NI = 16.6:83.4 (% weight ratio), however, showed an enhanced efficiency of 3.92% with a short circuit current density of 9.16 mA cm−2, open circuit voltage of 674.4 mV and a fill factor of 63.4%.  相似文献   

11.
A series of diethylethyletherylmethanamine bis(trifluoromethanesulfonyl)imide (DEEYTFSI) ionic liquid gel polymer electrolyte based polyurethane acrylate (PUA)/poly(methyl methacryltae) (PMMA) matrix with different contents of DEEYTFSI, PUA and LiTFSI were prepared via ultraviolet (UV) curing system. Electrochemical performances of the gel polymer were studied by electrochemical station and charge–discharge system. The gel polymer electrolyte with 19 wt.% DEEYTFSI obtained a maximum conductivity σ of 2.76 × 10?4 S cm?1 and the transference number tLi+ of ~0.22 at room temperature. 19 wt.% DEEYTFSI caused the easier transferring of lithium ions due to less apparent activation energy Ea of 21.1 kJ mol?1. The DEEYTFSI/LiTFSI/PUA/PMMA electrolyte had good compatibility with LiFePO4 cathode. The DEEYTFSI/LiTFSI/PUA/PMMA electrolyte with the electrochemical window of 4.70 V was enough stability for being the electrolyte material of lithium battery. The Li/19 wt.% DEEYTFSI–LiTFSI–PUA–PMMA/LiFePO4 coin-typed cell cycled at 0.1 C presented 95% efficiency on the 50th cycle.  相似文献   

12.
A polymer gel electrolyte composed of a poly(ethylene oxide) derivative, poly(ethylene oxide-co-2-(2-methoxyethoxy) ethyl glycidyl ether), mixed with gamma-butyrolactone (GBL), LiI and I2 is employed in dye sensitized solar cells (DSSC). The electrolyte is characterized by conductivity experiments, Raman spectroscopy and thermal analysis. The influence of the electrolyte composition on the kinetics of DSSC is also investigated by transient absorption spectroscopy (TAS). The electrolyte containing 70 wt.% of GBL and 20 wt.% of LiI presents the highest conductivity (1.9 × 10−3 S cm−1). An efficiency of 4.4% is achieved using this composition. The increase in ISC as a function of GBL can be attributed an increase in the mobility of the iodide (polyiodide) species. The increase in the yield of the intermediate species, I2, originating in the regeneration reaction, is confirmed by TAS. However, the charge recombination process is faster at this composition and a decrease in the Voc is observed. Photovoltage decay experiments confirm an acceleration in charge recombination for the DSSC assembled with the electrolyte containing more GBL. Raman investigations show that in this electrolyte the I5/I3 ratio is higher. Theoretical calculations also indicate that the I5 species is a better electron acceptor.  相似文献   

13.
A small amount of thiophene or ethylene dioxythiophene (EDOT) is introduced into the liquid electrolyte of lithium-ion cells as an additive. These organic additives are electrochemically oxidized to form a thin conductive polymer film on the surface of the cathode at high potential. With the liquid electrolyte containing different additives, the lithium-ion cells composed of carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode are assembled, and their cycling performances are evaluated. Adding small amounts of thiophene or EDOT to the liquid electrolyte is found to reduce the interfacial resistance in the cells and thus the cells containing an organic additive exhibit less capacity fading and better high-rate performance. Differential scanning calorimetric studies show that the thermal stability of the charged Li1−xNi1/3Co1/3Mn1/3O2 cathode is also enhanced in the presence of an organic additive.  相似文献   

14.
To seek a solid polymer electrolyte (SPE) with excellent performance, a novel poly(ethylene oxide) (PEO) based SPE is prepared by blending an appropriate amount of microcrystalline poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with PEO using a universal solution casting method. Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) are utilized to analyse the samples. The crystallinity of the blend solid polymer electrolyte is significantly lower than that of the neat PEO-based SPE. The addition of the PVDF-HFP disrupts the segment structure of the PEO crystal region and increases the proportion of the amorphous region, thus boosting the migration of lithium ions. The results show that the electrochemical stability window of the blend solid polymer electrolyte reaches as high as 4.8 V. The initial discharge specific capacity of the solid-state LiFePO4/SPE/Li battery is 131 mAh g−1 at 0.5 C and 60°C, and the discharge specific capacity is still 110.5 mAh g−1 after 100 cycles. On the basis of the results, the novel SPE has a widespread application prospects in solid-state lithium-ion batteries.  相似文献   

15.
This study describes the utilization of a novel conjugated copolymer, namely, poly[2,3-bis(thiophen-2-yl)-acrylonitrile-9,9′-dioctyl-fluorene] (FLC8) for organic solar cell application for the first time. The highest occupied molecular orbital and the lowest unoccupied molecular orbital of FLC8 are −5.68 and −3.55 eV, respectively, which lie between the corresponding values of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methylester (PCBM). In addition, both electron and hole mobilities of FLC8 are in the range of 10−4 (cm2/V s), making it an excellent ambipolar polymer. Such unique properties make FLC8 a good candidate to form a ternary cascade bulk-heterojunction organic solar cell when blending with P3HT and PCBM. The power conversion efficiency (PCE) of the ternary cascade solar cell can be increased by up to 30% as compared with the reference cell without FLC8. We suspect that this enhancement of PCE is caused by the additional charge separation offered by the cascade structure and the fast charge transfer due to the ambipolarity of FLC8.  相似文献   

16.
Membrane chemical degradation is a major contributor to the still limited lifetime of proton exchange membrane (PEM) fuel cells. In the present work, this phenomenon is simulated by computational fluid dynamics (CFD). The main advantage of the CFD model is that it can provide the degradation profile across the cell active area. Results reveal that degradation accelerates when voltage, temperature and pressure are increased and when reactants humidity and membrane thickness are decreased. Moreover, membrane deterioration is found to be more severe where oxygen pressure is higher, and more heterogeneous when oxygen distribution is less uniform. Generally, conditions that increase current production and thus oxygen depletion along the cell increase degradation heterogeneity. The flow field design is also found to influence the membrane degradation spatial profile. The modeling strategy here applied, the incorporation of a degradation sub-model into a general-purpose CFD code, can be used to include other degradation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号