首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methanol, dimethyl ether and bioethanol steam reforming to hydrogen-rich gas were studied over CuO/CeO2 and CuO–CeO2/γ-Al2O3 catalysts. Both catalysts were found to provide complete conversion of methanol to hydrogen-rich gas at 300–350 °C. Complete conversion of dimethyl ether to hydrogen-rich gas occurred over CuO–CeO2/γ-Al2O3 at 350–370 °C. Complete conversion of ethanol to hydrogen-rich gas occurred over CuO/CeO2 at 350 °C. In both cases, the CO content in the obtained gas mixture was low (<2 vol.%). This hydrogen-rich gas can be used directly for fuelling high-temperature PEM FC. For fuelling low-temperature PEM FC, it is needed only to clean up the hydrogen-rich gas from CO to the level of 10 ppm. CuO/CeO2 catalyst can be used for this purpose as well. Since no individual WGS stage, that is necessary in most other hydrogen production processes, is involved here, the miniaturization of the multifuel processor for hydrogen production by methanol, ethanol or DME SR is quite feasible.  相似文献   

2.
Autothermal reforming of methane includes steam reforming and partial oxidizing methane. Theoretically, the required endothermic heat of steam reforming of methane could be provided by adding oxygen to partially oxidize the methane. Therefore, combining the steam reforming of methane with partial oxidation may help in achieving a heat balance that can obtain better heat efficacy. Membrane reactors offer the possibility of overcoming the equilibrium conversion through selectively removing one of the products from the reaction zone. For instance, only can hydrogen products permeate through a palladium membrane, which shifts the equilibrium toward conversions that are higher than the thermodynamic equilibrium. In this study, autothermal reforming of methane was carried out in a traditional reactor and a Pd/Ag membrane reactor, which were packed with an appropriate amount of commercial Ni/MgO/Al2O3 catalyst. A power analyzer was employed to measure the power consumption and to check the autothermicity. The average dense Pd/Ag membrane thickness is 24.3 μm, which was coated on a porous stainless steel tube via the electroless palladium/silver plating procedure. The experimental operating conditions had temperatures that were between 350 °C and 470 °C, pressures that were between 3 atm and 7 atm, and O2/CH4 = 0–0.5. The effects of the operating conditions on methane conversion, permeance of hydrogen, H2/CO, selectivities of COx, amount of power supply, and the carbon deposition of the catalyst after the reaction is thoroughly discussed in this paper. The experimental results indicate that an optimum methane conversion of 95%, with a hydrogen production rate of 0.093 mol/m2. S, can be obtained from the autothermal reforming of methane at H2O/CH4 = 1.3 and O2/CH4 near 0.4, at which the reaction does not consume power, and the catalysts are not subject to any carbon deposition.  相似文献   

3.
A bi-function catalyst containing CuZnAlCr and HZSM-5 was used to generate hydrogen by stream reforming of dimethyl ether (SRD) in a metal foam micro-reactor and a fix-bed reactor. Dimethyl ether conversion of 99% and hydrogen yield of >95% was reached with HZSM-5/CuZnAlCr (mass ratio of 1:1) in the micro-reactor. A suitable balance between the dimethyl ether hydrolysis and methanol reforming steps requires the proper acidity and the metal sites. The CuZnAlCr/HZSM-5 properties, effect of CuZnAlCr to HZSM-5 mass ratio were investigated in the metal foam micro-reactor. Moreover, CO was removed from hydrogen-rich gas by preferential oxidation reaction (CO-PrOx) with PtFe/γ-Al2O3 catalyst in a similar metal foam micro-reactor follows the SRD stage. With the optimized O2/CO ratio and reaction temperature, the CO concentration dropped to <10 ppm and hydrogen yield of ∼90% were achieved in the new-type SRD-COPrOx system. The SRD-COPrOx system provide a constant hydrogen production with CO concentration lower than 10 ppm during 20 h. The results indicate that metal foam micro-reactor has the great potential in the DME steam reforming to supply hydrogen for low-temperature fuel cells.  相似文献   

4.
This work presents the characteristics of catalytic dimethyl ether (DME)/steam reforming based on a Cu–Zn/γ-Al2O3 catalyst for hydrogen production. A kinetic model for a reformer that operates at low temperature (200 °C–500 °C) is simulated using COMSOL 5.2 software. Experimental verification is performed to examine the critical parameters for the reforming process. During the experiment, superior Cu–Zn/γ-Al2O3catalysts are manufactured using the sol-gel method, and ceramic honeycombs coated with this catalyst (1.77 g on each honeycomb, five honeycombs in the reactor) are utilized as catalyst bed in the reformer to enhance performance. The steam, DME mass ratio is stabilized at 3:1 using a mass flow controller (MFC) and a generator. The hydrogen production rate can be significantly affected depending on the reactant's mass flow rate and temperature. And the maximum hydrogen yield can reach 90% at 400 °C. Maximum 8% error for the hydrogen yield is achieved between modeling and experimental results. These experiments can be further explored for directly feeding hydrogen to proton exchange membrane fuel cell (PEMFC) under the load variations.  相似文献   

5.
A novel catalyst precursor ZnAl-LDHs/γ-Al2O3 was prepared by in-situ synthesis method, and the copper was supported on calcined hydrotalcite catalyst precursor by wet impregnation. The correlation between the structure and the catalytic activity for methanol steam reforming was studied by XRD, SEM, TPR, chemisorption N2O, IR and N2 adsorption techniques. The results showed that the ZnAl-LDHs was successfully synthesized by in-situ synthesis method on γ-Al2O3 and the copper mass fraction had a great effect on the interactions between support and copper species. Furthermore, the catalyst reducibility and copper surface area evidently influenced catalytic activity for methanol steam reforming. The 10% Cu/γ-Al@MMO exhibited the best catalytic activity, that was, the methanol conversion was 99.98% and the CO concentration was only 0.92% at 300 °C in hydrogen production by methanol steam reforming.  相似文献   

6.
From a technical and economic point of view, autothermal steam reforming offers many advantages, as it minimizes heat load demand in the reformer. Bio-oil, the liquid product of biomass pyrolysis, can be effectively converted to a hydrogen-rich stream. Autothermal steam reforming of selected compounds of bio-oil was investigated using thermodynamic analysis. Equilibrium calculations employing Gibbs free energy minimization were performed for acetic acid, acetone and ethylene glycol in a broad range of temperature (400–1300 K), steam to fuel ratio (1–9) and pressure (1–20 atm) values. The optimal O2/fuel ratio to achieve thermoneutral conditions was calculated under all operating conditions. Hydrogen-rich gas is produced at temperatures higher than 700 K with the maximum yield attained at 900 K. The ratio of steam to fuel and the pressure determine to a great extent the equilibrium hydrogen concentration. The heat demand of the reformer, as expressed by the required amount of oxygen, varies with temperature, steam to fuel ratio and pressure, as well as the type of oxygenate compound used. When the required oxygen enters the system at the reforming temperature, autothermal steam reforming results in hydrogen yield around 20% lower than the yield by steam reforming because part of the organic feed is consumed in the combustion reaction. Autothermicity was also calculated for the whole cycle, including preheating of the organic feed to the reactor temperature and the reforming reaction itself. The oxygen demand in such a case is much higher, while the amount of hydrogen produced is drastically reduced.  相似文献   

7.
A numerical simulation of methanol steam reforming in a microreactor integrated with a methanol micro-combustor is presented. Typical Cu/ZnO/Al2O3 and Pt catalysts are considered for the steam reforming and combustor channels respectively. The channel widths are considered at 700 μm in the baseline case, and the reactor length is taken at 20 mm. Effects of Cu/ZnO catalyst thickness, gas hourly space velocities of both steam reforming and combustion channels, reactor geometry, separating substrate properties, as well as inlet composition of the steam reforming channel are investigated. Results indicate that increasing catalyst thickness will enhance hydrogen production by about 68% when the catalyst thickness is increased from 10 μm to 100 μm. Gas space velocity of the steam reforming channel shows an optimum value of 3000 h−1 for hydrogen yield, and the optimum value for the space velocity of the combustor channel is calculated at 24,000 h−1. Effects of inlet steam to carbon ratio on hydrogen yield, methanol conversion, and CO generation are also examined. In addition, effects of the separating substrate thickness and material are examined. Higher methanol conversion and hydrogen yield are obtained by choosing a thinner substrate, while no significant change is seen by changing the substrate material from steel to aluminum with considerably different thermal conductivities. The produced hydrogen from an assembly of such microreactor at optimal conditions will be sufficient to operate a low-power, portable fuel cell.  相似文献   

8.
In this study a numerical analysis of hydrogen production via an autothermal reforming reactor is presented. The endothermic reaction of steam methane reforming and the exothermic combustion of methane were activated with patterned Ni/Al2O3 catalytic layer and patterned Pt/Al2O3 catalytic layer, respectively. Aiming to achieve a more compacted process, a novel design of a reactor was proposed in which the reforming and the combustion catalysts were modeled as patterned thin layers. This configuration is analyzed and compared with two configurations. In the first configuration, the catalysts are modeled as continuous thin layers in parallel, while, in the second configuration the catalysts are modeled as continuous thin layers in series (conventional catalytic autothermal reactor). The results show that the pattern of the catalyst layers improves slightly the hydrogen yield, i.e. 3.6%. Furthermore, for the same concentration of hydrogen produced, the activated zone length can be decreased by 38% and 15% compared to the conventional catalytic autothermal reforming and the configuration where the catalysts are fitted in parallel, respectively. Besides, the oxygen consumption is lowered by 5%. The decrement of the catalyst amount and the oxygen feedstock in the novel studied design lead to lower costs and compact process.  相似文献   

9.
The Rh/Ce0·75Zr0·25O2–δ-ƞ-Al2O3/FeCrAl structured catalytic blocks of length 10, 20, and 60 mm were prepared and tested in the reactions of steam and autothermal reforming of n-hexadecane. It was found in a series of experiments on hexadecane steam reforming with the catalyst heating solely through the reactor wall that the complete conversion of hexadecane at a furnace temperature below 750 °C was not achieved even at GHSV = 10,000 h−1. Under these conditions, the formation of carbon on the catalyst surface was observed. At the reactor wall temperature of 800 °C, the complete conversion of hexadecane was achieved even in the 10 mm long catalytic block (GHSV = 60,000 h−1), accompanied by the formation of various intermediate light hydrocarbons. To achieve complete conversion of these intermediate compounds (mainly 1-alkenes), it is necessary to carry out the steam reforming reaction at GHSV = 10,000 h−1. At hexadecane autothermal reforming, heat is supplied to the reaction zone by exothermic oxidation reaction, which makes this process more efficient. In experiments with the use of additional external heat supply through the reactor wall, complete conversion of hexadecane occurred at GHSV = 120,000 h−1. To convert all by-products (mainly 1-alkenes) and achieve a nearly thermodynamic equilibrium distribution of the main reaction products (H2, CO, CO2), the reaction should be carried out at GHSV = 20,000 h−1. Without external heat supply, hexadecane conversion decreased, while the content of light hydrocarbons in the reaction products increased. An increase in the inlet amount of oxygen helps to compensate the heat losses in the reactor and to increase the efficiency of hexadecane autothermal reforming. The performed experiments allow better understanding of the processes which occur during the steam and autothermal reforming of diesel.  相似文献   

10.
The microfibrous structured catalytic packings for miniature fuel processor consisting of a methanol steam reformer and a subsequent CO cleanup train has been investigated experimentally. A highly void and tailorable sinter-locked microfibrous carrier consisting of 3.5 vol% 8 μm diameter Ni-fibers is used to entrap 35 vol% 150-250 μm catalyst particulates for both methanol steam reforming (MSR) and CO preferential oxidation (PROX). We demonstrate a microfibrous entrapped Pd-ZnO/Al2O3 catalyst packings for high efficiency hydrogen production by the MSR reaction. The use of microfibrous entrapment technology significantly enhances the catalyst utilization efficiency by a 4-fold improvement of the weight hourly space velocity (WHSV), compared to the single Pd-ZnO/Al2O3 particulates as keeping the methanol conversion at >98%. The microfibrous entrapped Pt-Co/Al2O3 catalyst packings can drive the CO from 2% down to <50 ppm at 150 °C with O2/CO ratio of 1 using a gas hourly space velocity (GHSV) of 32,000 h−1. Finally, a prototype fuel processor system integrating MSR reformer and CO PROX train is demonstrated as three reactors in series. Such test rig is capable of producing roughly 1700 standard cubic centimeter per minute (sccm) PEMFC-grade H2 (equivalent to ∼163 W of electric power) in a longer-term test, in which the MSR reactor is operated at 300 °C using a methanol/water (1/1.1, mole) mixture WHSV of 9 h−1 and CO PROX reactors at 150 °C using an O2/CO molar ratio of 1.3, respectively. In the test of this prototype system, MSR reactor delivers >97% methanol conversion throughout the entire 1200-h test; the CO cleanup train placed in line after 800-h MSR illustrates the capability to decrease the CO concentration from ∼3.5% to ∼1% at PROX-1 and then to less than 20 ppm at PROX-2 until to the end of test.  相似文献   

11.
Two compact reformer configurations in the context of production of hydrogen in a fuel processing system for use in a Proton Exchange Membrane Fuel Cell (PEMFC) based auxiliary power unit in the 2–3 kW range are compared using computer-based modeling techniques. Hydrogen is produced via catalytic steam reforming of n-heptane, the surrogate for petroleum naphtha. Heat required for this endothermic reaction is supplied via catalytic combustion of methane, the model compound for natural gas. The combination of steam reforming and catalytic combustion is modeled for a microchannel reactor configuration in which reactions and heat transfer take place in parallel, micro-sized flow paths with wall-coated catalysts and for a cascade reactor configuration in which reactions occur in a series of adiabatic packed-beds, heat exchange in interconnecting microchannel heat exchangers being used to maintain the desired temperature. Size and efficiency of the fuel processor consisting of the reformer, hydrogen clean-up units and heat exchange peripherals are estimated for either case of using a microchannel and a cascade configuration in the reforming step. The respective sizes of fuel processors with microchannel and cascade configurations are 1.53 × 10−3 and 1.71 × 10−3 m3. The overall efficiency of the fuel processor, defined as the ratio of the lower heating value of the hydrogen produced to the lower heating value of the fuel consumed, is 68.2% with the microchannel reactor and 73.5% with the cascade reactor mainly due to 30% lower consumption of n-heptane in the latter. The cascade system also offers advanced temperature control over the reactions and ease of catalyst replacement.  相似文献   

12.
In this paper, a numerical analysis of the production of hydrogen via autothermal (ATR) steam methane reforming (SMR) is presented. The combustion reaction occurs over a Pt/Al2O3 catalyst, and the reforming reaction is operated using a Ni/Al2O3 catalyst inside the same cylindrical channel. A novel configuration with18 catalytic-bed macro-patterns alternately mounted, referred to as SDB, is designed and compared with the catalytic dual-bed reactor (conventional configuration), referred to as CDB, at the same operating temperature and pressure conditions of 900 °C and 14 bars, respectively. The results showed that hydrogen yield was improved by 4.5% compared to the conventional configuration, while a decrease of 67 °C of the highest temperature was noticed. Meanwhile, the methane conversion was 63.73% and 65.44% for the CDB and SDB configurations, respectively. Furthermore, the length of the reactor can be decreased by 27%, keeping the same hydrogen yield at the outlet of the conventional reactor, indicating a potential reduction in hydrogen cost.  相似文献   

13.
The catalytic steam gasification of waste polyethylene (PE) from municipal solid waste (MSW) to produce syngas (H2 + CO) with NiO/γ-Al2O3 as catalyst in a bench-scale downstream fixed bed reactor was investigated. The influence of the reactor temperature on the gas yield, gas composition, steam decomposition, low heating value (LHV), cold gas efficiency and carbon conversion efficiency was investigated at the temperature range of 700–900 °C, with a steam to waste polyethylene ratio of 1.33. Over the ranges of experimental conditions examined, NiO/γ-Al2O3 catalyst revealed better catalytic performance as a view of increasing product gas yield and of decreasing char and liquid yields in the presence of steam. Higher temperature resulted in more H2 and CO production, higher carbon conversion efficiency and product gas yield. The highest syngas (H2 + CO) content of 64.35 mol%, the highest H2 content of 36.98 mol%, and the highest CO content of 27.37 mol%, were achieved at the highest temperature level of 900 °C. Syngas produced with a H2/CO molar ratio in the range of 0.83–1.35, was highly desirable as feedstock for Fischer–Tropsch synthesis for the production of transportation fuels.  相似文献   

14.
Alumina supported Pt group metal monolithic catalysts were investigated for selective oxidation of CO in hydrogen-rich methanol reforming gas for proton exchange membrane fuel cell (PEMFC) applications. The results are described and discussed in the present paper and show that Pt/γAl2O3Pt/γAl2O3 was the most promising candidate to selectively oxidize CO from an amount of about 1 vol% to less than 100 ppm. We have investigated the effect of the O2 to CO feed ratio, the feed concentration of CO, the presence of H2O and/or CO2, and the space velocity on the activity, selectivity and stability of Pt/Al2O3 monolithic catalysts. Afterwards, the Pt/Al2O3 catalyst was scaled up and applied in 5 kW hydrogen producing systems based on methanol steam reforming and autothermal reforming. The hydrogen produced was then used as fuel for an integrated PEMFC.  相似文献   

15.
Rice husk slurry is pumped into a packed reactor and the products from the steam reforming reactions using different catalysts are studied. The steam/biomass weight ratio of such a system is between 3.47 and 5.25. The solids, liquid and gaseous products are a mass fraction of 2.8-4.1%, a mass fraction of 92.4-93.0% and a mass fraction of 3.5-4.7%, respectively. The hydrogen concentration in the gaseous product is approximate a volume fraction of 41% using the Al2O3 catalyst of a CuO mass fraction of 13%, a volume fraction of 38% using the Al2O3 catalyst of a Ni mass fraction of 13%, a volume fraction of 31% using the Al2O3 catalyst of a ZnO mass fraction of 13%, and a volume fraction of 20% using the Al2O3 catalyst at the reactor temperature of 800 °C. In the reactor temperature range studied (350-800 °C), the hydrogen concentration in the product stream increases monotonically with the increasing of the reactor temperature and the steam/carbon molar ratio. The value of dry gas LHV is between 9.4 MJ m−3 and 12 MJ m−3 at the reaction temperature of 600-800 °C. Considering the simple catalyst used in current study, the syngas of a hydrogen volume fraction of approximate 40% is obtained by pumping the biomass slurry to carry out the catalytic steam reforming reaction.  相似文献   

16.
Nickel supported γ-alumina (Ni/γ-Al2O3) catalysts are well-known to be highly active on the autothermal reforming of methane, but to be unstable due to coke deposition. Cerium oxide (CeO2) is one of promising promoter to overcome the fast deactivation of nickel-based catalysts by coke formation. Herein, catalytic behavior of CeO2 over Ni/γ-Al2O3 catalysts on the autothermal reforming of methane was investigated. The catalytic activity was maintained for 100 h with H2/CO molar ratio of 1.9. The formation of CeAlO3 is observed at the reduction and reaction conditions. In this work, it was found that the formation of CeAlO3 promoted the catalytic oxidation toward CO2 and prevented the formation of α-Al2O3 and nickel-aluminate, resulting in stable activity for autothermal reforming of methane.  相似文献   

17.
A series of ZnO–Al2O3 catalysts with various ZnO/(ZnO + Al2O3) molar ratios have been developed for hydrogen production by dimethyl ether (DME) steam reforming within microchannel reactor. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction and temperature programmed desorption of NH3. It was found that the catalytic activity was strongly dependent on the catalyst composition. The overall DME reforming rate was maximized over the catalyst with ZnO/(ZnO + Al2O3) molar ratio of 0.4, and the highest H2 space time yield was 315 mol h−1·kgcat−1 at 460 °C. A bi-functional mechanism involving catalytic active site coupling has been proposed to account for the phenomena observed. An optimized bi-functional DME reforming catalyst should accommodate the acid sites and methanol steam reforming sites with a proper balance to promote DME steam reforming, whereas all undesired reactions should be impeded without sacrificing activity. This work suggests that an appropriate catalyst composition is mandatory for preparing good-performance and inexpensive ZnO–Al2O3 catalysts for the sustainable conversion of DME into H2-rich reformate.  相似文献   

18.
Structured CuNi/γ-Al2O3/Al catalyst exhibited a good stability in steam reforming of dimethyl ether (DME SR) system, but there was a high CO concentration in outlet gas (about 25%). For the problem, a series of CuNiFe/γ-Al2O3/Al catalysts with different Fe content were prepared through impregnation method. It is found that the CO concentration obviously decreased after the addition of Fe. When the loading amount of Fe was 12.5 wt%, the catalyst presented the best performance: the conversion of DME reached 100% and the H2 yield was over 0.9 in both the microreactor and fixed-bed reactor. Furthermore, cross-flow channels and parallel-flow channels were built respectively by mesh-type catalyst and plate-type catalyst in the microreactor. The gas/solid mass transfer limitations in both flow channels were investigated by Damköhler number (Da). The results showed that the Da values of cross flow were always <0.01, while the values of parallel flow were >0.01. It indicated that the diffusion over mesh-type catalyst was less influenced by temperature and reactor height, making it a more appropriate choice for the microreactor.  相似文献   

19.
《Journal of power sources》2005,145(2):702-706
An integrated microchannel methanol processor was developed by assembling unit reactors, which were fabricated by stacking and bonding microchannel patterned stainless steel plates, including fuel vaporizer, heat exchanger, catalytic combustor and steam reformer. Commercially available Cu/ZnO/Al2O3 catalyst was coated inside the microchannel of the unit reactor for steam reforming. Pt/Al2O3 pellets prepared by ‘incipient wetness’ were filled in the cavity reactor for catalytic combustion. Those unit reactors were integrated to develop the fuel processor and operated at different reaction conditions to optimize the reactor performance, including methanol steam reformer and methanol catalytic combustor. The optimized fuel processor has the dimensions of 60 mm × 40 mm × 30 mm, and produced 450sccm reformed gas containing 73.3% H2, 24.5% CO2 and 2.2% CO at 230–260 °C which can produce power output of 59 Wt.  相似文献   

20.
Production of hydrogen from acetic acid (HAc) was performed by using a novel electrochemical catalytic reforming (ECR) approach over the 18%NiO/Al2O3 catalyst. ECR was carried out in a fixed-bed continuous flow reactor, where an ac electric current was passed through the catalyst. A high yield of hydrogen (>90%) and carbon conversion (>90%) were obtained as the reforming temperature over 400 °C via the ECR approach. The influences of the current on the HAc decomposition, its reforming, and the catalyst reduction in the ECR process have been investigated, which were compared with those in the common steam reforming (CSR) route. The mechanism of the HAc reforming in ECR was also discussed based on the present investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号