首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepine) (PProDOT-Et2) counter electrode prepared by electrochemical polymerization on a fluorine-doped tin oxide (FTO) glass substrate was incorporated in a platinum-free dye-sensitized solar cell (DSSC). The surface roughness and I/I3 redox reaction behaviors based on PProDOT-Et2, poly(3,4-propylenedioxythiophene) (PProDOT), poly(3,4-ethylenedioxythiophene) (PEDOT), and sputtered-Pt electrodes were characterized, and their performances as counter electrodes in DSSCs were compared. Cells fabricated with a PProDOT-Et2 counter electrode showed a higher conversion efficiency of 7.88% compared to cells fabricated with PEDOT (3.93%), PProDOT (7.08%), and sputtered-Pt (7.77%) electrodes. This enhancement was attributed to increases in the effective surface area and good catalytic properties for I3 reduction. In terms of the film thickness effect, the fill factor was strongly dependent on the deposition charge capacity of the PProDOT-Et2 layer, but the aggregation of PProDOT-Et2 in thicker layers (>80 mC cm−2) resulted in decreases in JSC and the cell conversion efficiency. The charge transfer resistances (Rct1) of the PProDOT-Et2 counter electrodes had the lowest value of ∼18 Ω at a deposition charge capacity of 40 mC cm−2. These results indicate that films with high conductivity, high active surface area, and good catalytic properties for I3 reduction can potentially be used as the counter electrode in a high-performance DSSC.  相似文献   

2.
Carbon-nanofibers (CNFs) with antler and herringbone structures are studied as a tri-iodide (I3) reduction electrocatalyst in combination with the liquid electrolyte or an alternative stable quasi-solid state electrolyte. The catalytic properties of the counter electrode (CE) are characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The doctor bladed low temperature CNFs-CE has faster I3 reduction rate and low charge transfer resistance (RCT) of ∼0.5 Ω cm2 than platinum (Pt) (∼2.3 Ω cm2) due to the nanofiber stacking morphology. Its herringbone and antler structures with graphitic layers lead to defect rich edge planes and larger diameter of CNFs facilitate the electron transfer kinetics. The cells with CNF counter electrodes are showing promising energy conversion efficiency greater than 7.0% for the glass based devices and 5.0% for the flexible cells filled with the quasi-solid state electrolyte, which is similar to Pt performance. Application of CNFs-CE in flexible and quasi-solid state electrolyte increases the possibility of roll to roll process, low cost and stable dye-sensitized solar cells (DSCs).  相似文献   

3.
Different amounts of Nafion loadings (in the range of 0–2.0 mg cm−2) were added to a catalyst containing 0.5 mg cm−2 of Pt; these were prepared by spraying a Nafion solution on an electrode surface. The effect of Nafion loading on the activity of the catalyst and the performance of a proton exchange membrane fuel cell (PEMFC) was investigated by using electrochemical methods such as direct current polarization (using an IV curve), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and linear scan voltammetry (LSV). The results of the IV and EIS were compared in order to resolve the ohmic resistance (RΩ, calculated from the IV curve) into interfacial and internal resistances (Rif and Rs, simulated from the EIS). The analysis of the electrochemical data revealed that the interfacial resistance (Rif) is closely related to the reactive region of three-phase zones (interfaces among the reactants, electrolyte and catalyst), and it provides a major parameter for diagnosing the activity of the catalysts and the performance of the PEMFC.  相似文献   

4.
In the electrochemical Bunsen reaction, SO2 is oxidized to H2SO4 at the anode while I2 is reduced to HI at the cathode. Both electrodes were electrochemically characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The effects of H2SO4 concentration in the anolyte, as well as HI concentration and I2/HI molar ratio in the catholyte, were explored. The cyclic voltammograms of platinum electrode shift with rising scan rate, indicating the irreversibility of two electrode reactions. The equivalent circuit for the cathode reaction impedance consists of an ohmic resistance of the solution, in series with a parallel combination of a charge transfer resistor and a constant phase element, yet the impedance spectra for the anode reaction can be modeled using a parallel combination of a charge transfer resistor and a constant phase element. The electrode reaction kinetics was also analyzed using the exchange current density (j0) and the standard reaction rate constant (k0). The results indicate that a high electrode reaction rate in the cell can be obtained for a HI concentration of 8 mol/kgH2O and an I2/HI molar ratio of 0.5 in the catholyte and a H2SO4 concentration of 13 mol/kgH2O in the anolyte.  相似文献   

5.
Dye-sensitized solar cells (DSSCs) incorporating TiO2 porous films, prepared at a low temperature (150 °C), along with multi-wall carbon nanotubes (MWCNTs) were studied using two different electrolytes, namely LiI and THI. Electrochemical impedance spectroscopy (EIS) was employed to quantify the charge transport resistance and electron lifetime (τe) under different levels (wt%) of MWCNTs and electrolytes. The charge transport resistance at the TiO2/dye/electrolyte interface (Rct2) increased as a function of the MWCNT concentration, which ranged 0.1-0.5 wt%, due to a decrease in the surface area and decreased dye adsorption. The characteristic peak shifted to a lower frequency at 0.1 wt% of MWCNT, indicating a longer electron lifetime. The DSSC with the TiO2 electrode containing 0.1 wt% of MWCNT resulted in a higher short-circuited current density (JSC) of 9.08 mA/cm2, an open-circuit voltage (VOC) of 0.781 V, and a cell conversion efficiency of 5.02%. EIS was also conducted under dark conditions. The large value at a middle frequency represented electron transport at the TiO2/dye/electrolyte interface (Rrec). The Rrec for 0.1 wt% MWCNT/TiO2 was found to be 114 Ω, and for those with 0.3 and 0.5 wt% were 35 and 30 Ω, respectively. The significantly higher value of Rrec suggested that the charge recombination between injected electrons and electron acceptors in the redox electrolyte, I3, was remarkably retarded. Finally, electrolytes with LiI and THI were used to compare the cell conversion performance under the same conditions. It was found that more electrons were injected in the TiO2 electrode and the electron recombination reaction was faster in the DSSC with THI than that with LiI.  相似文献   

6.
The electrical properties of an n+–p–p+ structure-based single-crystalline silicon solar cell were studied by impedance spectroscopy, IV and spectral response. The impedance spectrum is measured in dark, under different intensities (14, 43, 57, 71, 86, 100 mW/cm2) of illumination and wavelengths (400–1050 nm) of light. Under dark and at low intensities of illumination (<50 mW/cm2) the impedance spectra show perfect semicircles but at high intensities the semicircles are distorted at low frequencies. It is found that illumination provides an additional virtual R1C1 network parallel to the initial bulk RpCp network observed under dark conditions. The value of virtual resistance R1 depends on the illumination wavelength and shows an inverse relationship with the spectral response of the device.  相似文献   

7.
In this study, we used the electrochemical impedance spectra to evaluate the anode performance of direct formic acid fuel cell (DFAFC), and how its anode charge transfer resistance (Ranode,ct) and electrolyte resistance (Rele) are affected by various cell operating parameters. The parameters investigated in this study include the anode overpotentials, cell operation times, formic acid feed concentrations and cell temperatures. The anode impedance spectra demonstrated that the Ranode,ct and Rele are low for the DFAFC using 5 M formic acid feed concentration, which leads to its high power density output of 250 mW cm−2 at 0.35 V and 30 °C. The high performance of the DFAFC demonstrates that it has a great potential for portable power applications. The Ranode,ct increases gradually as either the cell operation time increases or the formic acid feed concentration is raised from 10 to 15 M, which leads to a deactivation of the anode electrode, resulting in reduction of overall cell performance. However, these deactivation processes are reversible and the cell performance can be easily reactivated.  相似文献   

8.
Quasi-solid-state dye-sensitized solar cells (DSC) are fabricated using tetradodecylammonium bromide as a low molecular mass organogelator (LMOG) to form gel electrolyte with a high solution-to-gel transition temperature (TSG) of 75 °C to hinder flow and volatilization of the liquid. The steady-state voltammograms reveal that the diffusion of the I3 and I in the gel electrolyte is hindered by the self-assembled network of the gel. An increased interfacial exchange current density (j0) of 4.95 × 10−8 A cm−2 and a decreased electron recombination lifetime (τ) of 117 ms reveal an increased electron recombination at the dyed TiO2 photoelectrode/electrolyte interface in the DSC after gelation. The results of the accelerated aging tests show that the gel electrolyte based dye-sensitized solar cell can retain over 93% of its initial photoelectric conversion efficiency value after successive heating at 60 °C for 1000 h, and device degradation is negligible after one sun light soaking with UV cutoff filter for 1000 h.  相似文献   

9.
Reversible solid oxide fuel cells (R-SOFCs) are regarded as a promising solution to the discontinuity in electric energy, since they can generate electric powder as solid oxide fuel cells (SOFCs) at the time of electricity shortage, and store the electrical power as solid oxide electrolysis cells (SOECs) at the time of electricity over-plus. In this work, R-SOFCs with thin proton conducting electrolyte films of BaCe0.5Zr0.3Y0.2O3−δ were fabricated and their electro-performance was characterized with various reacting atmospheres. At 700 °C, the charging current (in SOFC mode) is 251 mA cm−2 at 0.7 V, and the electrolysis current densities (in SOEC mode) reaches −830 mA cm−2 at 1.5 V with 50% H2O-air and H2 as reacting gases, respectively. Their electrode performance was investigated by impedance spectra in discharging mode (SOFC mode), electrolysis mode (SOEC mode) and open circuit mode (OCV mode). The results show that impedance spectra have different shapes in all the three modes, implying different rate-limiting steps. In SOFC mode, the high frequency resistance (RH) is 0.07 Ωcm2 and low frequency resistances (RL) are 0.37 Ωcm2. While in SOEC mode, RH is 0.15 Ωcm2, twice of that in SOFC mode, and RL is only 0.07 Ωcm2, about 19% of that in SOFC mode. Moreover, the spectra under OCV conditions seems like a combination of those in SOEC mode and SOFC mode, since that RH in OCV mode is about 0.13 Ωcm2, close to RH in SOEC mode, while RL in OCV mode is 0.39 Ωcm2, close to RL in SOFC mode. The elementary steps for SOEC with proton conducting electrolyte were proposed to account for this phenomenon.  相似文献   

10.
In this work, impedance spectroscopy has been employed to explore the electrochemical behaviour of a 15 cm2 complete tubular cell with BaZr0.8Ce0.1Y0.1O3-δ (BZCY) electrolyte and two asymmetric Ni-BCZY cermet electrodes for hydrogen separation. Analyses of impedance spectra at different temperatures and gas compositions reveal that the thick inner electrode contributes most to the total polarisation resistance (Rp). For Rp there are four contributions with well-separated time constants of which gas phase hydrogen diffusion within the porous Ni-BZCY anode is predominant. The other three can be ascribed to proton migration through the space charge layer of the BZCY electrolyte adjacent to the Ni electrode, hydrogen redox charge transfer reactions, and hydrogen diffusion within Ni bulk. The present study guides the way to parameterise and, on this basis, optimise electrodes for scalable proton ceramic electrochemical cells.  相似文献   

11.
In this study, binary ionic liquids (bi-IL) of imidazolium salts containing cations with different carbon side chain lengths (C = 2, 4, 6, 8) and anions such as iodide (I), tetrafluoroborate (BF4), hexafluorophosphate (PF6) and trifluoromethansulfonate (SO3CF3) were used as electrolytes in dye-sensitized solar cells (DSSCs). On increasing the side chain length of imidazolinium salts, the diffusion coefficients of I3 and the cell conversion efficiencies decreased; however, the electron lifetimes in TiO2 electrode increased. As for different anions, the cell which contains 1-butyl-3-methyl imidazolium trifluoromethansulfonate (BMISO3CF3) electrolyte has better performance than those containing BMIBF4 and BMIPF6. From the impedance measurement, the cell containing BMISO3CF3 electrolyte has a small charge transfer resistance (Rct2) at the TiO2/dye/electrolyte interface. Moreover, the characteristic frequency peak for TiO2 in the cell based on BMISO3CF3 is less than that of BMIBF4 and BMIPF6, indicating the cell with bi-IL electrolyte based on BMISO3CF3 has higher electron lifetime in TiO2 electrode. Finally, the solid-state composite was introduced to form solid-state electrolytes for highly efficient DSSCs with a conversion efficiency of 4.83% under illumination of 100 mW cm−2. The long-term stability of DSSCs with a solidified bi-IL electrolyte containing SiO2 nanoparticles, which is superior to that of a bi-IL electrolyte alone, was also presented.  相似文献   

12.
Porous Fe2O3 nanostructures were synthesized through electrospinning of Fe (NO3)3/polyvinylpyrrolidone followed by calcination in air. The morphology of the resultant Fe2O3 was tuned by changing the ratio between Fe (NO3)3 and the polymer matrix. The performance of these nanostructures as counter electrodes in dye‐sensitized solar cells (DSSCs) was investigated. It was found that nanotubes exhibit significantly higher catalytic efficiency toward reducing I?/I3? electrolytes than nanorods and nanobelts, showing a photoelectric conversion efficiency of 4.0%, also superior to a range of transition metal oxides. Furthermore, the nanotube‐based counter electrode showed lower resistance than other Fe2O3 nanostructures. These results were attributed to the high specific surface area (90.2 m2 g?1) of the nanotubes, which provides a large reaction site and can promote the charge transfer at the electrode/electrolyte interfaces. The low cost and ease of mass production make Fe2O3 nanotube a promising candidate to replace Pt as the counter electrode in DSSCs.  相似文献   

13.
NaI/I2 mediators and activated carbon were added into poly(ethylene oxide) (PEO)/lithium aluminate (LiAlO2) electrolyte to fabricate composite electrodes. All solid-state supercapacitors were fabricated using the as prepared composite electrodes and a Nafion 117 membrane as a separator. Cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements were conducted to evaluate the electrochemical properties of the supercapacitors. With the addition of NaI/I2 mediators, the specific capacitance increased by 27 folds up to 150 F g−1. The specific capacitance increased with increases in the concentration of mediators in the electrodes. The addition of mediators also reduced the electrode resistance and rendered a higher electron transfer rate between mediator and mediator. The stability of the all-solid-state supercapacitor was tested over 2000 charge/discharge cycles.  相似文献   

14.
Sodium-ion transfer through the interface between ceramic and organic electrolytes was studied by AC impedance spectroscopy. Na3Zr1.88Y0.12Si2PO12 (NASICON) and Na-β″-alumina were used as ceramic electrolytes, and propylene carbonate (PC) and dimethyl sulfoxide (DMSO) containing 0.05 mol dm−3 NaCF3SO3 were used as organic electrolytes. The semi-circle ascribed to interfacial charge transfer resistance (Rct) was observed. The activation energies for sodium-ion transfer at the interface between ceramic and organic electrolytes were evaluated by the temperature dependency of Rct. As a result, the activation energies depended on the ceramic electrolytes but not on the solvents. These results suggest that sodium-ion transfer from ceramic to organic electrolytes should be responsible for the activation energies, which is contrary to the case in a lithium-ion transfer system. Based on these results, the mechanism of interfacial sodium-ion transfer was discussed.  相似文献   

15.
Nano-CdSnO3 is prepared by thermal decomposition of the precursor, CdSn(OH)6 at 600 °C for 6 h in air. The material is characterized physically by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and selected-area electron diffraction (SAED) techniques. Nano-CdSnO3 exhibits a reversible and stable capacity of 475(±5) mAh g−1 (∼5 mol of cycleable Li per mole of CdSnO3) for at least 40 cycles between 0.005 and 1.0 V at a current rate of 0.13 C. Extensive capacity fading is found when cycling in the range 0.005-1.3 V. Cyclic voltammetry studies complement galvanostatic cycling data and reveal average discharge and charge potentials of 0.2 and 0.4 V, respectively. The proposed reaction mechanism is supported by ex situ XRD, TEM and SAED studies. The electrochemical impedance spectra taken during 1st and 10th cycle are fitted with an equivalent circuit to evaluate impedance parameters and the apparent chemical diffusion coefficient (DLi+) of Li. The bulk impedance, Rb, dominates at low voltages (≤0.25 V), whereas the combined surface film and charge-transfer impedance (R(sf+ct)) and the Warburg impedance dominate at higher voltages, ≥0.25 V. The DLi+ is in the range of (0.5-0.9) × 10−13 cm2 s−1 at V = 0.5-1.0 V during the 10th cycle.  相似文献   

16.
The cathode reaction mechanism of porous Sm0.5Sr0.5CoO3−δ, a mixed ionic and electronic conductor (MIEC), is studied through a comparison with the composite cathode Sm0.5Sr0.5CoO3−δ/Sm0.2Ce0.8O1.9. First, the cathodic behaviour of porous Sm0.5Sr0.5CoO3−δ and Sm0.5Sr0.5CoO3−δ/Sm0.2Ce0.8O1.9 are observed for micro-structure and impedance spectra according to Sm0.2Ce0.8O1.9 addition, thermal cycling and long-term properties. The cathode reaction mechanism is discussed in terms of frequency response, activation energy, reaction order and electrode resistance for different oxygen partial pressures p(O2) at various temperatures. Three elementary steps are considered to be involved in the cathodic reaction: (i) oxygen ion transfer at the cathode-electrolyte interface; (ii) oxygen ion conduction in the bulk cathode; (iii) gas phase diffusion of oxygen. A reaction model based on the empirical equivalent circuit is introduced and analyzed using the impedance spectra. The electrode resistance at high frequency (Rc,HF) in the impedance spectra represents reaction steps (i), due to its fast reaction rate. The electrode resistance at high frequency is independent of p(O2) at a constant temperature because the semicircle of Rc,HF in the complex plane of the impedance spectra is held constant for different values of p(O2). Reaction steps (ii) and (iii) are the dominant processes for a MIEC cathode, according to the analysis results. The proposed cathode reaction model and results for a solid oxide fuel cell (SOFC) well describe a MIEC cathode with high ionic conductivity, and assist the understanding of the MIEC cathode reaction mechanism.  相似文献   

17.
Composite electrodes composed of a perovskite-type La0.8Sr0.2Sc0.1Mn0.9O3−δ (LSSM) and a fluorite-type scandium-stabilized zirconia (ScSZ) were prepared and evaluated as potential cathodes for intermediate-temperature solid-oxide fuel cells. Characterization was made by phase reaction, electrochemical impedance spectroscopy, step current polarization and IV tests. The phase reaction between LSSM and ScSZ occurred at 1150 °C or higher; however, it had a minor effect on the electrode performance. The formation of a composite electrode led to an obvious improvement in both charge transfer and surface-related processes. With the increase of ScSZ content, the rate-limiting step of oxygen reduction reaction steadily changed from mainly a surface diffusion process to an electron transfer process. The optimal ScSZ content and sintering temperature of the electrode layer were found to be 20 wt.% and 1100–1150 °C, respectively. Under optimal conditions, an anode-supported single cell with LSSM + ScSZ composite cathode showed high power densities of ∼1211 and 386 mW cm−2 at 800 and 650 °C, respectively.  相似文献   

18.
Mg–Ni hydrogen storage alloy electrodes with composition of Mg–33, 50, 67 Ni at. % in amorphous phase were prepared by means of mechanical alloying (MA) process using a planetary ball mill. The electrochemical hydrogen storage characteristics and mechanisms of these electrodes were investigated by electrochemical measurements, X–ray diffraction (XRD) and scanning electron microscope (SEM) analyses. The relationship between alloy composition and electrochemical properties was evaluated. In addition, optimum milling time and composition of Mg–Ni hydrogen storage alloy with acceptable electrochemical performance were determined. XRD results show that the alloys exhibit dominatingly amorphous structures after milling of 20 h. The electrochemical measurements revealed that the discharge capacity of Mg33Ni67 and Mg67Ni33 alloy electrodes reached a maximum when alloys were prepared after 20 h of milling time (260 and 381 mAhg?1, respectively). The maximum discharge capacity of Mg50Ni50 alloy was observable after 40 h milling (525 mAhg?1). It was also found that the cyclic stability of the alloys increased with increasing Ni content. Among these alloys, the amorphous Mg50Ni50 alloy presents the best overall electrochemical performance. In this paper, electrode process kinetics of Mg50Ni50 alloy electrode was also studied by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The impedance spectra of electrodes were measured at different depths of discharge (DODs). The observed spectra were fit well with the equivalent circuit model used in the paper. The electrochemical parameters calculated from electrochemical impedance were also compared. The electrochemical discharge and cyclic performance of 20, 40 and 60 h milled Mg50Ni50 alloy electrodes were demonstrated by the fitted charge transfer resistance and Warburg impedance obtained at various DODs. It was further observed that the controlling-step of the discharge process changed from a mixed rate-determining process at lower DODs to a mass-transfer controlled process at higher DODs. The fitted results demonstrated that charge–transfer resistance (Rct) increased with DOD. The Rct of 40 h milled Mg50Ni50 alloy (29.27 Ω) was lower than that of 20 h (41.89 Ω) and 60 h milled alloys (92.43 Ω) at fully discharge state.  相似文献   

19.
Electrochemical impedance spectroscopy (EIS) was employed for in situ diagnosis for polymer electrolyte membrane fuel cells during operation. First, EIS was measured as a function of operation parameters such as applied current density, gas flow rates and gas humidification temperature. The resistance that correlated with conductivity of the membrane and the contact resistance between bipolar plate and gas diffusion layer (GDL) was set as Rm in the assumed equivalent circuit. The charge transfer resistances were considered for cathode (Rct(C)). The value of Rct(C) was sensitive to the parameters that affected cell voltage. Additionally, the diffusion resistance (Rd) was ascribed to the effect of oxygen supply and drainage of generated water. Second, the influence of corrosion of type 430 stainless steel bipolar plates was evaluated by EIS method during operation. Corrosion of the stainless steel bipolar plates resulted in an increase in the value of Rd.  相似文献   

20.
The change in the mixed phase heavily oxidized PtRu anode with the exposure of methanol in a direct methanol fuel cell (DMFC) has been investigated by electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD). The investigation had two major objectives: (i) to explore the original state of the active catalyst and (ii) to understand if alloying of Pt and Ru is a requirement for higher methanol oxidation activity. It was found that the methanol oxidation activity gradually improved for ∼2 h of exposure. The impedance spectra were taken at different times within this time of improvement of activity. The impedance spectra were deconvoluted in different contributions like membrane resistance (Rm), charge transfer resistance (RCt), adsorption resistance (Rad), and oxidation resistance (Rox). The improvement of the activity was explained in terms of the effect of the pretreatment on different contributions. XRD was done on the virgin and methanol exposed sample as a possible mean to identify the difference. It was postulated that the reduction of the as prepared PtRu after exposure was responsible for the activity improvement. Also, it was shown that bulk alloy formation is not a necessary condition for higher methanol activity of PtRu catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号