首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-dimensional two-phase mass transport model has been developed to predict methanol and water crossover in a semi-passive direct methanol fuel cell with an air-breathing cathode. The mass transport in the catalyst layer and the discontinuity in liquid saturation at the interface between the diffusion layer and catalyst layer are particularly considered. The modeling results agree well with the experimental data of a home-assembled cell. Further studies on the typical two-phase flow and mass transport distributions including species, pressure and liquid saturation in the membrane electrode assembly are investigated. Finally, the methanol crossover flux, the net water transport coefficient, the water crossover flux, and the total water flux at the cathode as well as their contributors are predicted with the present model. The numerical results indicate that diffusion predominates the methanol crossover at low current densities, while electro-osmosis is the dominator at high current densities. The total water flux at the cathode is originated primarily from the water generated by the oxidation reaction of the permeated methanol at low current densities, while the water crossover flux is the main source of the total water flux at high current densities.  相似文献   

2.
针对常规流场质子交换膜燃料电池提出了三维非等温数学模型。模型考虑了电化学反应动力学以及反应气体在流道和多孔介质内的流动和传递过程,详细研究了水在质子膜内的电渗和扩散作用。计算结果表明,反应气体传质的限制和质子膜内的水含量直接决定了电极局部电流密度的分布和电池输出性能;在电流密度大于0.3~0.4A/cm2时开始出现水从阳极到阴极侧的净迁移;高电流密度时膜厚度方向存在很大的温度梯度,这对膜内传递过程有较大影响。  相似文献   

3.
In this paper, a two-phase two-dimensional PEM fuel cell model, which is capable of handling liquid water transport across different porous materials, is employed for parametric studies of liquid water transport and distribution in the cathode of a PEM fuel cell. Attention is paid particularly to the coupled effects of two-phase flow and heat transfer phenomena. The effects of key operation parameters, including the outside cell boundary temperature, the cathode gas humidification condition, and the cell operation current, on the liquid water behaviors and cell performance have been examined in detail. Numerical results elucidate that increasing the fuel cell temperature would not only enhance liquid water evaporation and thus decrease the liquid saturation inside the PEM fuel cell cathode, but also change the location where liquid water is condensed or evaporated. At a cell boundary temperature of 80 °C, liquid water inside the catalyst layer and gas diffusion media under the current-collecting land would flow laterally towards the gas channel and become evaporated along an interface separating the land and channel. As the cell boundary temperature increases, the maximum current density inside the membrane would shift laterally towards the current-collecting land, a phenomenon dictated by membrane hydration. Increasing the gas humidification condition in the cathode gas channel and/or increasing the operating current of the fuel cell could offset the temperature effect on liquid water transport and distribution.  相似文献   

4.
A proton exchange membrane (PEM) fuel cell with interdigitated flow field was studied numerically. A three-dimensional, gas–liquid two-phase flow and transport model was developed and utilized to simulate the multi-dimensional, multi-phase flow and transport phenomena in both the anode and cathode sides in the fuel cell and the cell performances with different influencing operational and geometric parameters. The simulations are presented with an emphasis on the physical insight and fundamental understanding afforded by the detailed distributions of working media velocity, oxygen concentration, water vapor concentration, liquid water concentration, water content in the PEM, net water flux per proton flux, current density and overpotential. Cell performances with different influencing factors are also discussed. A comparison of the model prediction and the experimental data shows good agreement.  相似文献   

5.
A pore network modeling approach is developed to study multiphase transport phenomena inside a porous structure representative of the Cathode Catalyst Layer (CCL) of Proton Exchange Membrane Fuel Cell. A full coupling between two-phase transport, charge transport and heat transport is considered. The liquid water evaporation is also taken into account. The current density profile and the liquid water distribution and production are investigated to understand the liquid production mechanism inside the CCL. The results suggest that the wettability and the pore size distribution have an important impact on the water management inside the cathode catalyst layer and thus on the performances of the proton exchange membrane fuel cell. Simulations show also that Bruggemann correlation used in classical models does not predict correctly gas diffusion.  相似文献   

6.
Water content in the membrane and the presence of liquid water in the catalyst layers (CL) and the gas diffusion layers (GDL) play a very important role in the performance of a PEM fuel cell. To study water transport in a PEM fuel cell, a two‐phase flow mathematical model is developed. This model couples the continuity equation, momentum conservative equation, species conservative equation, and water transport equation in the membrane. The modeling results of fuel cell performances agree well with measured experimental results. Then this model is used to simulate water transport and current density distribution in the cathode of a PEM fuel cell. The effects of operating pressure, cell temperature, and humidification temperatures on the net water transfer through the membrane, liquid water saturation, and current density distribution are studied. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(2): 89–100, 2006; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/htj.20107  相似文献   

7.
A multi-dimensional two-phase PEM fuel cell model, which is capable of handling the liquid water transport across different porous materials, including the catalyst layer (CL), the micro-porous layer (MPL), and the macro-porous gas diffusion medium (GDM), has been developed and applied in this paper for studying the liquid water transport phenomena with consideration of the MPL. Numerical simulations show that the liquid water saturation would maintain the highest value inside the catalyst layer while it possesses the lowest value inside the MPL, a trend consistent qualitatively with the high-resolution neutron imaging data. The present multi-dimensional model can clearly distinguish the different effects of the current-collecting land and the gas channel on the liquid water transport and distribution inside a PEM fuel cell, a feature lacking in the existing one-dimensional models. Numerical results indicate that the MPL would serve as a barrier for the liquid water transport on the cathode side of a PEM fuel cell.  相似文献   

8.
A two-dimensional two-phase non-isothermal mass transport model is developed to numerically investigate the behavior of water transport through the membrane electrode assembly (MEA) of a direct methanol fuel cell. The model enables the visualization of the distribution of the liquid saturation through the MEA and the analysis of the distinct effects of the three water transport mechanisms: diffusion, convection and electro-osmotic drag, on the water-crossover flux through the membrane. A parametric study is then performed to examine the effects of the structure design of the gas diffusion layer (GDL) on water crossover. The results indicate that the flow-channel rib coverage on the GDL surface and the deformation of the GDL can cause an uneven distribution of the water-crossover flux along the in-plane direction, especially at higher current densities. It is also found that both the contact angle and the permeability of the cathode GDL can significantly influence the water-crossover flux. The water-crossover flux can be reduced by improving the hydrophobicity of the cathode GDL.  相似文献   

9.
In this work, a one-dimensional, isothermal two-phase mass transport model is developed to investigate the water transport through the membrane electrode assembly (MEA) for liquid-feed direct methanol fuel cells (DMFCs). The liquid (methanol–water solution) and gas (carbon dioxide gas, methanol vapor and water vapor) two-phase mass transport in the porous anode and cathode is formulated based on classical multiphase flow theory in porous media. In the anode and cathode catalyst layers, the simultaneous three-phase (liquid and vapor in pores as well as dissolved phase in the electrolyte) water transport is considered and the phase exchange of water is modeled with finite-rate interfacial exchanges between different phases. This model enables quantification of the water flux corresponding to each of the three water transport mechanisms through the membrane for DMFCs, such as diffusion, electro-osmotic drag, and convection. Hence, with this model, the effects of MEA design parameters on water crossover and cell performance under various operating conditions can be numerically investigated.  相似文献   

10.
A three‐dimensional, gas–liquid two‐phase flow and transport model has been developed and utilized to simulate the multi‐dimensional, multi‐phase flow and transport phenomena in both the anode and cathode sides in a proton exchange membrane (PEM) fuel cell and the cell performance with different influencing operational and geometric parameters. The simulations are presented with an emphasis on the physical insight and fundamental understanding afforded by the detailed distributions of velocity vector, oxygen concentration, water vapor concentration, liquid water concentration, water content in the PEM, net water flux per proton flux, local current density, and overpotential. Cell performances with different influencing factors are also presented and discussed. The comparison of the model prediction and experimental data shows a good agreement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The water required for the methanol oxidation reaction in a direct methanol fuel cell (DMFC) operating with neat methanol can be supplied by diffusion from the cathode to the anode through the membrane. In this work, we present a method that allows the water transport rate through the membrane to be in-situ determined. With this method, the effects of the design parameters of the membrane electrode assembly (MEA) and operating conditions on the water transport through the membrane are investigated. The experimental data show that the water flux by diffusion from the cathode to the anode is higher than the opposite flow flux of water due to electro-osmotic drag (EOD) at a given current density, resulting in a net water transport from the cathode to the anode. The results also show that thinning the anode gas diffusion layer (GDL) and the membrane as well as thickening the cathode GDL can enhance the water transport flux from the cathode to the anode. However, a too thin anode GDL or a too thick cathode GDL will lower the cell performance due to the increases in the water concentration loss at the anode catalyst layer (CL) and the oxygen concentration loss at the cathode CL, respectively.  相似文献   

12.
It has been reported recently that water flooding in the cathode gas channel has significant effects on the characteristics of a proton exchange membrane fuel cell. A better understanding of this phenomenon with the aid of an accurate model is necessary for improving the water management and performance of fuel cell. However, this phenomenon is often not considered in the previous one-dimensional models where zero or a constant liquid water saturation level is assumed at the interface between gas diffusion layer and gas channel. In view of this, a one-dimensional fuel cell model that includes the effects of two-phase flow in the gas channel is proposed. The liquid water saturation along the cathode gas channel is estimated by adopting Darcy’s law to describe the convective flow of liquid water under various inlet conditions, i.e. air pressure, relative humidity and air stoichiometry. The averaged capillary pressure of gas channel calculated from the liquid water saturation is used as the boundary value at the interface to couple the cathode gas channel model to the membrane electrode assembly model. Through the coupling of the two modeling domains, the water distribution inside the membrane electrode assembly is associated with the inlet conditions. The simulation results, which are verified against experimental data and simulation results from a published computational fluid dynamics model, indicate that the effects of relative humidity and stoichiometry of inlet air are crucial to the overall fuel cell performance. The proposed model gives a more accurate treatment of the water transport in the cathode region, which enables an improved water management through an understanding of the effects of inlet conditions on the fuel cell performance.  相似文献   

13.
Variable temperature flow field concept allows maintaining close to 100% relative humidity along the entire flow field of the anode and the cathode side without external humidification using water generated during fuel cell operation for internal reactant humidification. This work deals with the experimental validation of the variable temperature flow field concept on a five-segment single cell. The experimental setup provides insight into the membrane water transport, temperature distribution on the current collectors and inside the channels, and the current density distribution along the cell. Variable temperature flow field operation with dry reactants is compared to isothermal operation with partially and fully humidified reactants. The polarization curve comparison shows that the variable temperature flow field operating efficiency is similar or better than the commonly used isothermal configuration with fully humidified reactants. The main contribution of the variable temperature flow field concept, when compared to isothermal operation, is the reduction of the mass transport losses at higher currents, since the generated water is evaporated in the stream of reactants, thereby minimizing the problem of liquid water removal from the cell.  相似文献   

14.
In this study, the internal transport phenomena and mechanism inside an air-cooled proton exchange membrane fuel cell (PEMFC) are investigated. It helps to understand the factors that affect the performance of an air-cooled PEMFC and optimize the design of Membrane Electrode Assembly (MEA) and the flow field. This series article contains two parts. In this paper, i.e., Part Ⅰ of this series, a three-dimensional, two-phase flow, non-isothermal, steady-state Computational Fluid Dynamics (CFD) model is established to investigate the liquid water generation mechanism and the species distributions inside an air-cooled PEMFC single cell with a Base Case flow field design. Dry hydrogen and ambient air (the relative humidity and the stoichiometry are 60% and 150 separately) are considered for the simulation and validation. It is found that the liquid water appears mostly inside the cathode electrode underneath the cathode rib. Inside the anode gas diffusion layer (GDL), the mass fraction of H2 underneath the cathode ribs is lower than that underneath the cathode channels, while the mass fraction of H2O shows the opposite. The distributions of O2 mass fraction and H2O mass fraction inside the cathode GDL have the same trend as those of H2 mass fraction and H2O mass fraction inside the anode GDL. The membrane water content is periodically distributed from channel to channel and its value underneath the cathode rib is much larger than that underneath the cathode channel. The current density distribution is affected by the distribution of water content, i.e., the part underneath the cathode rib shows a larger current density than that underneath the cathode channel.  相似文献   

15.
Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Single- and two-phase regimes of water distribution and transport are classified by a threshold current density corresponding to first appearance of liquid water at the membrane/cathode interface. When the cell operates above the threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multicomponent mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone of the hydrophilic structure. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A cm−2 for dry inlet air.  相似文献   

16.
An algebraic model of the membrane electrode assembly of the direct methanol fuel cell is developed, which considers the simultaneous liquid water and methanol crossover effects, and the associated electrochemical reactions. The respective anodic and cathodic polarization curves can be predicted using this model. Methanol concentration profile and flux are correlated explicitly with the operating conditions and water transport rate. The cathode mixed potential effect induced by the methanol crossover is included and the subsequent cell voltage loss is identified. Water crossover is influenced by the capillary pressure equilibrium and hydrophobic property within the cathode gas diffusion layer. The model can be used to evaluate the cell performance at various working parameters such as membrane thickness, methanol feed concentration, and hydrophobicity of the cathode gas diffuser.  相似文献   

17.
Sufficient water transport through the membrane is necessary for a well-performing anion exchange membrane fuel cell (AEMFC). In this study, the water flux through a membrane electrode assembly (MEA), using a Tokuyama A201 membrane, is quantified using humidity sensors at the in- and outlet on both sides of the MEA. Experiments performed in humidified inert gas at both sides of the MEA or with liquid water at one side shows that the aggregation state of water has a large impact on the transport properties. The water fluxes are shown to be approximately three times larger for a membrane in contact with liquid water compared to vaporous. Further, the flux during fuel cell operation is investigated and shows that the transport rate of water in the membrane is affected by an applied current. The water vapor content increases on both the anode and cathode side of the AEMFC for all investigated current densities. Through modeling, an apparent water drag coefficient is determined to −0.64, indicating that the current-induced transport of water occurs in the opposite direction to the transport of hydroxide ions. These results implicate that flooding, on one or both electrodes, is a larger concern than dry-out in an AEMFC.  相似文献   

18.
Alkaline anion exchange membrane (AAEM) fuel cell is becoming more attractive because of its outstanding merits, such as fast electrochemical kinetics and low dependence on non-precious catalyst. In this study, a three-dimensional multiphase non-isothermal AAEM fuel cell model is developed. The modeling results show that the performance is improved with more anode humidification, but the improvement becomes less significant at higher humidification levels. The humidification level of anode can change the water removal mechanisms: at partial humidification, water is removed as vapor; and for full humidification, water is removed as liquid. Cathode humidification is even more critical than anode. Liquid water supply in cathode has a positive effect on performance, especially at high current densities. With more liquid water supply in cathode, liquid water starts moving from channel to CL, rather than being removed from CL. Liquid water supply in cathode is needed to balance the water amounts in anode and cathode. Decreasing the membrane thickness generally improves the cell performance, and the improvement is even enhanced with thinner membranes, due to the faster water diffusion between anode and cathode, which reduces the mass transport losses.  相似文献   

19.
A three dimensional transient model fully coupling the two phase flow, species transport, heat transport, and electrochemical processes is developed to investigate the liquid water formation and transport in a polymer electrolyte fuel cell (PEFC). This model is based on the multiphase mixture (M2) formulation with a complete treatment of two phase transport throughout the PEFC, including gas channels, enabling modeling the liquid water motion in the entire PEFC. This work particularly focuses on the liquid water accumulation and transport in gas channels. It is revealed that the liquid water accumulation in gas channels mainly relies on three mechanisms and in the anode and cathode may rely on different mechanisms. The transport of liquid water in the anode channel basically follows a condensation–evaporation mechanism, in sharp contrast to the hydrodynamic transport of liquid water in the cathode channel. Liquid water in the cathode channel can finally flow outside from the exit along with the exhaust gas. As the presence of liquid water in gas channels alters the flow regime involved, from the single phase homogeneous flow to two phase flow, the flow resistance is found to significantly increase.  相似文献   

20.
In determining the liquid water distribution in the anode (or the cathode) diffusion medium of a liquid-feed direct methanol fuel cell (DMFC) with a conventional two-phase mass transport model, a current-independent liquid saturation boundary condition at the interface between the anode flow channel and diffusion layer (DL) (or at the interface between the cathode flow channel and cathode DL) needs to be assumed. The numerical results resulting from such a boundary condition cannot realistically reveal the liquid distribution in the porous region, as the liquid saturation at the interface between the flow channel and DL varies with current density. In this work, we propose a simple theoretical approach that is combined with the in situ measured water-crossover flux in the DMFC to determine the liquid saturation in the anode catalyst layer (CL) and in the cathode CL. The determined liquid saturation in the anode CL (or in the cathode CL) can then be used as a known boundary condition to determine the water distribution in the anode DL (or in the cathode DL) with a two-phase mass transport model. The numerical results show that the water distribution becomes much more realistic than those predicted with the assumed boundary condition at the interface between the flow channel and DL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号