首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In polymer electrolyte fuel cell (PEFC), gas-diffusion electrode (GDE) plays very significant role in force transmission from bipolar plate to the membrane. This paper investigates the effects of material heterogeneities of gas-diffusion electrode layer (gas-diffusion layer (GDL) and catalyst layer (CL)) on the assembly stress levels of single PEFC stack. In addition, we adopt a force transfer mechanism in a single fuel cell stack based on material heterogeneities of GDL and CL to understand the limitations and advantages associated with it through numerical analyses. Nanoscale heterogeneities in GDE are effectively implemented in the simulation cases along with the membrane swelling. Influence of presence or absence of CL interlayer in the numerical environment is found to have significant impact on the adjacent layers as well as interfaces.  相似文献   

2.
The aim of this work is to study the effects of gas-diffusion layer (GDL) anisotropy and the spatial variation of contact resistance between GDLs and catalyst layers (CLs) on water and heat transfer in polymer electrolyte fuel cells (PEFCs). A three-dimensional, two-phase, numerical PEFC model is employed to capture the transport phenomena inside the cell. The model is applied to a two-dimensional cross-sectional PEFC geometry with regard to the in-plane and through-plane directions. A parametric study is carried out to explore the effects of key parameters, such as through-plane and in-plane GDL thermal conductivities, operating current densities, and electronic and thermal contact resistances. The simulation results clearly demonstrate that GDL anisotropy and the spatial variation of GDL/CL contact resistance have a strong impact on thermal and two-phase transport characteristics in a PEFC by significantly altering the temperature, water and membrane current density distributions, as well as overall cell performance. This study contributes to the identification of optimum water and thermal management strategies of a PEFC based on realistic anisotropic GDL and contact-resistance variation inside a cell.  相似文献   

3.
We focus on the effect of cathode catalyst layer physical structure on the cell performance of proton exchange membrane fuel cell (PEMFC). At low polarization, high inlet humidification predicts better cell performance because of the more active surface in the CL. As polarization is extended near the mass transfer limited regime, high humidification only renders a flooded electrode and inferior cell performance. Catalyst layer with better capillary water transport parameters performs better than that with inferior water repulsion capability. Permeation in the gas diffusion layer (GDL) is important for efficient oxygen diffusion in mass transfer influenced regime. On the other hand, the permeability in catalyst layer only has secondary effect.The distribution of material properties in the CL is studied for the MEA fabrication strategy. The CL is divided into three sub-layers with changing material properties. With water effect considered, better performance is obtained for higher porosity near the GDL, higher electrolyte fraction in the agglomerate near the membrane. The effect of agglomerate particle size differs in the ohmic and mass transfer controlled regimes. Larger agglomerate size near GDL is preferred in the ohmic limited regime, while smaller size near GDL performs better if operated at mass transfer controlled regime.  相似文献   

4.
We reconstruct a proton exchange membrane fuel cell (PEMFC) catalyst layer (CL) and a non-woven carbon paper gas diffusion layer (GDL) by specially-designed stochastic methods. The reconstructed microstructures evidently distinguish all the participating components in the composite GDL/CL. Characterization analyses with respect to the reconstructed GDL/CL give important structural properties such as geometrical connectivity of an individual phase, pore size distribution, and volume-specific interfacial area. Self-developed Lattice Boltzmann (LB) models are established to calculate effective transport physical properties including effective thermal/electric conductivity and effective species diffusivity of the reconstructed GDL/CL, and permeability of the reconstructed GDL. Accordingly, we obtain tortuosity values for pore or solid phase in the reconstructed GDL/CL.  相似文献   

5.
A PEMFC (polymer electrolyte membrane fuel cell or proton exchange membrane fuel cell) stack is composed of GDLs (gas diffusion layers), MEAs (membrane electrode assemblies), and bipolar plates. One of the important functions of bipolar plates is to collect and conduct the current from cell to cell, which requires low electrical bulk and interfacial resistances. For a carbon fiber epoxy composite bipolar plate, the interfacial resistance is usually much larger than the bulk resistance due to the resin-rich layer on the composite surface.In this study, a thin graphite layer is coated on the carbon/epoxy composite bipolar plate to decrease the interfacial contact resistance between the bipolar plate and the GDL. The total electrical resistance in the through-thickness direction of the bipolar plate is measured with respect to the thickness of the graphite coating layer, and the ratio of the bulk resistance to the interfacial contact resistance is estimated using the measured data. From the experiment, it is found that the graphite coating on the carbon/epoxy composite bipolar plate has 10% and 4% of the total electrical and interfacial contact resistances of the conventional carbon/epoxy composite bipolar plate, respectively, when the graphite coating thickness is 50 μm.  相似文献   

6.
High water contact angle in carbon fiber can facilitate water removal ability of gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs). Water contact angle is intensively dependent on the surface hydrophobicity of carbon fiber in GDL. In this study, the hydrophobicity of commercial GDL is enhanced through the immersion and hydrothermal methods. The porosity decreases slightly while the surface roughness and surface topology diversity increase significantly in hydrothermal GDL compared with commercial reference and immersion GDL samples. The molecular dynamics simulations show that the water contact angle increases significantly with the increasing surface roughness but varies slightly with different surface topology, indicating that the water contact angle is dominated by the surface roughness. This study's findings are expected to offer an approach that can effectively enhance the water removal capacity by tailoring the surface roughness of carbon fibers in GDL materials.  相似文献   

7.
The feasibility of using sintered stainless steel fiber felt (SSSFF) as gas diffusion layer (GDL) in proton exchange membrane fuel cells (PEMFCs) is evaluated in this study. The SSSFF is coated with an amorphous carbon (a-C) film by closed field unbalanced magnetron sputter ion plating (CFUBMSIP) to enhance the corrosion resistance and reduce the contact resistance. The characteristics of treated SSSFF, including microscopic morphology, mechanical properties, electrical conductivity, electrochemical behavior and wettablity characterization, are systematically investigated and summarized according to the requirements of GDL in PEMFC. A membrane electrode assembly (MEA) with a-C coated SSSFF-15 GDL is fabricated and assembled with a-C coated stainless steel bipolar plates in a single cell. The initial peak power density of the single cell is 877.8 mW cm−2 at a current density of 2324.9 mA cm−2. Lifetime test of the single cell over 200 h indicates that the a-C coating protects the SSSFF-15 GDL from corrosion and decreases the performance degradation from 30.6% to 6.3%. The results show that the SSSFF GDL, enjoying higher compressive modulus and ductility, is a promising solution to improve fluid permeability of GDL under compression and PEMFC durability.  相似文献   

8.
The water required for the methanol oxidation reaction in a direct methanol fuel cell (DMFC) operating with neat methanol can be supplied by diffusion from the cathode to the anode through the membrane. In this work, we present a method that allows the water transport rate through the membrane to be in-situ determined. With this method, the effects of the design parameters of the membrane electrode assembly (MEA) and operating conditions on the water transport through the membrane are investigated. The experimental data show that the water flux by diffusion from the cathode to the anode is higher than the opposite flow flux of water due to electro-osmotic drag (EOD) at a given current density, resulting in a net water transport from the cathode to the anode. The results also show that thinning the anode gas diffusion layer (GDL) and the membrane as well as thickening the cathode GDL can enhance the water transport flux from the cathode to the anode. However, a too thin anode GDL or a too thick cathode GDL will lower the cell performance due to the increases in the water concentration loss at the anode catalyst layer (CL) and the oxygen concentration loss at the cathode CL, respectively.  相似文献   

9.
It is known that the static contact angle reflecting the “contact area” between liquid and solid is insufficient to represent the dynamic wettability of a solid surface, and another parameter called the sliding angle is needed to describe the relative easiness of liquid moving on a solid surface. However, sliding angle has been largely neglected in the previous studies for proton exchange membrane fuel cell (PEMFC). In this study, three-dimensional multiphase simulations are carried out for a PEMFC with single straight flow channels considering both the static contact angles and sliding angles of gas diffusion layer (GDL) and catalyst layer (CL). The results show that the liquid water volume fraction in cathode CL (CCL) and GDL (CGDL) can be increased by several times when the sliding angle is increased while the static contact angle is kept constant. This could have significant implication on the water management strategy due to the considerable changes in the water transport and removal processes. Since GDL is much thicker than CL, changing the surface dynamic wettability of GDL has more significant effect on liquid water transport than changing the surface dynamic wettability of CL.  相似文献   

10.
A series of carbon fiber felt/PTFE based gas diffusion layers (GDL) for Mg-air fuel cells were prepared by a simple method of immersing carbon fiber felt in PTFE suspension. Critical properties of the as-prepared GDL, including the surface morphology, electronic resistivity, porosity and gas permeability, have been characterized to investigate the effect of PTFE suspension concentration and PTFE content on the properties of the GDL. The micrographs indicated that the PTFE was homogenously dispersed on the carbon fiber felts and showed structure with a microporous layer. The as-prepared GDL exhibited good mechanical property, high electronic conductivity, sufficient water repellency and high gas permeability. Compared with the Mg-air fuel cell with a traditional carbon powder based cathode, the performance and the stability of Mg-air fuel cell with the carbon fiber felt based GDL are improved significantly.  相似文献   

11.
As one of the key components of proton-exchange membrane fuel cells, the gas-diffusion layer (GDL) that is made of carbon fibres usually exhibits strong structural anisotropy. Nevertheless, the GDL has traditionally been simplified as a homogeneous porous structure in modelling the transport of species through the GDL. In this work, a coupled electron and two-phase mass transport model for anisotropic GDLs is developed. The effects of anisotropic GDL transport properties due to the inherent anisotropic carbon fibres and caused by GDL deformations are studied. Results indicate that the inherent structural anisotropy of the GDL significantly influences the local distribution of both cathode potential and current density. Simulation results further indicate that a GDL with deformation results in an increase in the concentration polarization due to the increased mass-transfer resistance in the deformed GDL. On the other hand, the ohmic polarization is found to be smaller in the deformed GDL as the result of the decreased interfacial contact resistance and electronic resistance in the GDL. This result implies that an optimum deformation needs to be achieved so that both concentration and ohmic losses can be minimized.  相似文献   

12.
Past studies have shown that both the substrate and microporous layer of the gas diffusion layer (GDL) significantly affect water balance and performance of a proton exchange membrane (PEM) fuel cell. However, little effort has been made to investigate the importance of GDL properties on the durability of PEM fuel cells. In this study, the in situ degradation behaviour of a commercial GDL carbon fiber paper with MPL was investigated under a combination of elevated temperature and elevated flow rate conditions. To avoid the possible impact of the catalyst layer during degradation test, different barriers without catalyst were utilized individually to isolate the anode and cathode GDLs. Three different barriers were evaluated on their ability to isolate GDL degradation and their similarity to a fuel cell environment, and finally a novel Nafion/MPL/polyimide barrier was chosen. Characterization of the degraded GDL samples was conducted through the use of various diagnostic methods, including through-plane electrical resistivity measurements, mercury porosimetry, relative humidity sensitivity, and single-cell performance curves. Noticeable decreases in electrical resistivity and the hydrophobic properties were detected for the degraded GDL samples. The experimental results suggested that material loss plays an important role in GDL degradation mechanisms, while excessive mechanical stress prior to degradation weakens the GDL structure and changes its physical property, which consequently accelerates the material loss of the GDL during aging.  相似文献   

13.
Polymer electrolyte-based unitized reversible fuel cells (URFCs) combine the functionality of a fuel cell and an electrolyzer in a single device. In a URFC, titanium (Ti)-felt is used as a gas diffusion layer (GDL) of the oxygen electrode, whereas typical carbon paper is used as a GDL of the hydrogen electrode. Different samples of Ti-felt with different structural properties (porosity and fiber diameter) and PTFE content were prepared for use as GDLs of the oxygen electrode, and the relation between the properties of the GDL and the fuel cell performance was examined for both fuel cell and electrolysis operation modes. Experimental results showed that the cell with a Ti-felt GDL of 80 μm fiber diameter had the highest round-trip efficiency due to excellent fuel cell operation under relatively high-humidity conditions despite degradation in performance in the electrolysis mode.  相似文献   

14.
A numerical method is developed to study the effect of the compression deformation of the gas diffusion layer (GDL) on the performance of the proton exchange membrane fuel cell (PEMFC). The GDL compression deformation, caused by the clamping force, plays an important role in controlling the performance of PEMFC since the compression deformation affects the contact resistance, the GDL porosity distribution, and the cross-section area of the gas channel. In the present paper, finite element method (FEM) is used to first analyze the ohmic contact resistance between the bipolar plate and the GDL, the GDL deformation, and the GDL porosity distribution. Then, finite volume method is used to analyze the transport of the reactants and products. We investigate the effects of the GDL compression deformation, the ohmic contact resistivity, the air relative humidity, and the thickness of the catalyst layer (CL) on the performance of the PEMFC. The numerical results show that the fuel cell performance decreases with increasing compression deformation if the contact resistance is negligible, but an optimal compression deformation exists if the contact resistance is considerable.  相似文献   

15.
In this study, porous components of a proton exchange membrane (PEM) fuel cell, i.e., single-layer gas diffusion layer (GDL, carbon paper), double-layer GDL (microporous layer (MPL) deposited carbon papers), and catalyzed electrodes, are subjected to 60 repetitive freeze-thaw cycles between −40 °C and 30 °C under water-submerged conditions; and their morphological and microstructural characteristics are investigated at each 15 cycles and compared with those of virgin materials. The results indicate that consecutive cycling of temperature causes different degradation patterns in different components. The single-layer GDL shows a unique degradation mechanism, in which macro-scale pores volumetrically expand, and relatively small-scale hollows and cracks form on the polymeric binder and carbon fiber interfaces, respectively. For the double-layer GDL, large-scale surface cracks form on the MPL surface after 15 cycles, and the morphology and microstructure degradation gains momentum with the formation of these cracks, and upon completion of 30 cycles, large-scale carbon/hydrophobic agent flakes start to detach from the surface. For the catalyzed electrodes, due to their inherently cracked surface, the catalyst layers (CLs) degrade first through expansion of the cracks in the in- and through-plane directions, and then through swelling and agglomeration of the ionomer; and combination of these two patterns triggers detachment of large CL flakes from the surface, negatively affecting the microstructure.  相似文献   

16.
Liquid water transport is one of the key challenges for water management in a proton exchange membrane (PEM) fuel cell. Investigation of the air–water flow patterns inside fuel cell gas flow channels with gas diffusion layer (GDL) would provide valuable information that could be used in fuel cell design and optimization. This paper presents numerical investigations of air–water flow across an innovative GDL with catalyst layer and serpentine channel on PEM fuel cell cathode by use of a commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different static contact angles (hydrophilic or hydrophobic) were applied to the electrode (GDL and catalyst layer). The results showed that different wettabilities of cathode electrode could affect liquid water flow patterns significantly, thus influencing on the performance of PEM fuel cells. The detailed flow patterns of liquid water were shown, several gas flow problems were observed, and some useful suggestions were given through investigating the flow patterns.  相似文献   

17.
In this study, the lattice Boltzmann method was used to simulate the three-dimensional intrusion process of liquid water in the gas diffusion layer (GDL) of a polymer electrolyte membrane fuel cell (PEMFC). The GDL was reconstructed by the stochastic method and used to investigate fiber orientation's influence on liquid water transport in the GDL of a PEMFC. The fiber orientation can be described by the angle between a single fiber and the in-plane direction; three different samples were simulated for three different fiber orientation ranges. The simulated permeability correlated well with the anisotropic characteristics of reconstructed carbon papers. It was concluded that the fiber orientation had a significant effect on the liquid invasion pattern in the GDL by changing the pore shape and distribution of the GDL. The results indicated that the stochastically reconstructed GDL, taking into account the fiber orientation, better demonstrates the mass transport properties of the GDL.  相似文献   

18.
The clamping pressure of polymer electrolyte membrane fuel cells for vehicle applications should be typically high enough to minimize contact resistance. However, an excessive compression pressure may cause a durability problem. In this study, the effects of gas diffusion layer (GDL) structure on the open circuit voltage (OCV) and hydrogen crossover have been closely examined. Results show that the performances of fuel cells with GDL-1 (a carbon fiber felt substrate with MPL having rough surface) and GDL-3 (a carbon fiber paper substrate with MPL having smooth surface) are higher than that with GDL-2 (a carbon fiber felt substrate with MPL having smooth surface) under low clamping torque conditions, whereas when clamping torque is high, the GDL-1 sample shows the largest decrease in cell performance. Hydrogen crossover for all GDL samples increases with the increase of clamping torque, especially the degree of increase of GDL-1 is much greater than that of the other two GDL samples. The OCV reduction of GDL-1 is much greater than that of GDL-2 and GDL-3. It is concluded that the GDL-3 is better than the other two GDLs in terms of fuel cell durability, because the GDL-3 shows the minimum OCV reduction.  相似文献   

19.
The electrochemical behavior and the reactant transport in the porous gas diffusion layer (GDL) and catalyst layer (CL) are controlled by a large number of parameters such as porosity, permeability, conductivity, catalyst loading, and average pore size, etc. A three‐dimensional polymer electrolyte membrane fuel cell model is developed. The model accounts for the mass, fluid, and thermal transport processes as well as the electrochemical reaction. Using this model, the effects of the various porous electrode design parameters including porosity, solid electronic conductivity, and thermal conductivity of cathode GDL, and the catalyst loading, average pore size of cathode CL are investigated through parametric study. The model is shown to agree well with the experimental data of some porous electrode specifications. In addition, the model shows promise as a tool for optimizing the design of fuel cells. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, a three-dimensional model was established using the lattice Boltzmann method (LBM) to study the internal ice melting process of the gas diffusion layer (GDL) of the proton exchange membrane fuel cell (PEMFC). The single-point second-order curved boundary condition was adopted. The effects of GDL carbon fiber number, growth slope of the number of carbon fibers and carbon fiber diameter on ice melting were studied. The results were revealed that the temperature in the middle and lower part of the gradient distribution GDL is significantly higher than that of the no-gradient GDL. With the increase of the growth slope of the number of carbon fiber, the temperature and melting rate gradually increase, and the position of the solid-liquid interface gradually decreases. The decrease in the number of carbon fibers has a similar effect as the increase in the growth slope of the number of carbon fibers. In addition, as the diameter of the carbon fiber increases, the position of the solid-liquid interface gradually decreases first and then increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号