首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A direct carbon fuel cell based on a conventional anode-supported tubular solid oxide fuel cell, which consisted of a NiO-YSZ anode support tube, a NiO-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode, has been successfully achieved. It used the carbon black as fuel and oxygen as the oxidant, and a preliminary examination of the DCFC has been carried out. The cell generated an acceptable performance with the maximum power densities of 104, 75, and 47 mW cm−2 at 850, 800, and 750 °C, respectively. These results demonstrate the feasibility for carbon directly converting to electricity in tubular solid oxide fuel cells.  相似文献   

2.
The combination of biomass gasification with solid oxide fuel cells (SOFCs) is gaining increasing interest as an efficient and environmentally benign method of producing electricity and heat. However, tars in the gas stream arising from the gasification of biomass material can deposit carbon on the SOFC anode, having detrimental effects to the life cycle and operational characteristics of the fuel cell. This work examines the impact of biomass gasification syngas components combined with benzene as a model tar, on carbon formation on Ni/CGO (gadolinium-doped ceria) SOFC anodes. Thermodynamic calculations suggest that SOFCs operating at temperatures > 750 °C are not susceptible to carbon deposition from a typical biomass gasification syngas containing 15 g m−3 benzene.However, intermediate temperature SOFCs operating at temperatures < 650 °C require threshold current densities well above what is technologically achievable to inhibit the effects of carbon deposition. SOFC anodes have been shown to withstand tar levels of 2-15 g m−3 benzene at 765 °C for 3 h at a current density of 300 mA cm−2, with negligible impact on the electrochemical performance of the anode. Furthermore, no carbon could be detected on the anode at this current density when benzene levels were <5 g m−3.  相似文献   

3.
The direct carbon fuel cell (DCFC) employs a process by which carbon is converted to electricity, without the need for combustion or gasification. The operation of the DCFC is investigated with a variety of solid carbons from several sources including some derived from coal. The highly organized carbon form, graphite, is used as the benchmark because of its availability and stability. Another carbon form, which is produced at West Virginia University (WVU), uses different mixtures of solvent extracted carbon ore (SECO) and petroleum coke. The SECO is derived from coal and both this and the petroleum coke are low in ash, sulfur, and volatiles. Compared to graphite, the SECO is a less-ordered form of carbon. In addition, GrafTech, Inc. (Cleveland, OH) supplied a well-fabricated baked carbon rod derived from petroleum coke and conventional coal–tar binder. The open-circuit voltage of the SECO rod reaches a maximum of 1.044 V while the baked and graphite rods only reach 0.972 V and 0.788 V, respectively. With this particular cell design, typical power densities were in the range of 0.02–0.08 W cm−2, while current densities were between 30 and 230 mA cm−2. It was found that the graphite rod provided stable operation and remained intact during multi-hour test runs. However, the baked (i.e., non-graphitized) rods failed after a few hours due to selective attack and reaction of the binder component.  相似文献   

4.
Metal-supported solid oxide fuel cells (SOFCs) with thin YSZ electrolyte films and infiltrated Ni and LSM catalysts are operated in the temperature range 650–750 °C. A five-layer structure consisting of porous metal-support/porous YSZ interlayer/dense YSZ electrolyte film/porous YSZ interlayer/porous metal current collector is prepared at 1300 °C in reducing atmosphere. This cell structure is then sealed and joined to a cell housing/gas manifold using a commercially available braze. Finally, the porous YSZ interlayers are infiltrated with Ni and LSM catalyst precursor solutions at low temperature prior to cell testing. Infiltrating the catalysts after the high temperature sintering and brazing steps avoids undesirable decomposition of LSM, Ni coarsening, and interdiffusion between Ni catalyst and FeCr in the support. Maximum power densities of 233 and 332 mW cm−2 were achieved at 650 and 700 °C, respectively, with air as oxidant. With pure oxygen as oxidant, power densities of 726, 993, and >1300 mW cm−2 were achieved at 0.7 V at 650, 700, and 750 °C, respectively.  相似文献   

5.
A co-tape casting technique was applied to fabricate electrolyte/anode for solid oxide fuel cells. YSZ and NiO-YSZ powders are raw materials for electrolyte and anode, respectively. Through adjusting the Polyvinyl Butyral (PVB) amount in slurry, the co-sintering temperature for electrolyte/anode could be dropped. After being co-sintered at 1400 °C for 5 h, the half-cells with dense electrolytes and large three phase boundaries were obtained. The improved unit cell exhibited a maximum power density of 589 mW cm−2 at 800 °C. At the voltage of 0.7 V, the current densities of the cell reached 667 mA cm−2. When the electrolyte and the anode were cast within one step and sintered together at 1250 °C for 5 h and the thickness of electrolyte was controlled exactly at 20 μm, the open-circuit voltage (OCV) of the cell could reach 1.11 V at 800 °C and the maximum power densities were 739, 950 and 1222 mW cm−2 at 750, 800 and 850 °C, respectively, with H2 as the fuel under a flow rate of 50 sccm and the cathode exposed to the stationary air. Under the voltage of 0.7 V, the current densities of cell were 875, 1126 and 1501 mA cm−2, respectively. These are attributed to the large anode three phase boundaries and uniform electrolyte obtained under the lower sintering temperature. The electrochemical characteristics of the cells were investigated and discussed.  相似文献   

6.
In this work, a cerium-gadolinium oxide (CGO)/nickel (Ni)-CGO hollow fibre (HF) for micro-tubular solid oxide fuel cells (SOFCs), which consists of a fully gas-tight outer electrolyte layer supported on a porous inner composite anode layer, has been developed via a novel single-step co-extrusion/co-sintering technique, followed by an easy reduction process. After depositing a multi-layers cathode layer and applying current collectors on both anode and cathode, a micro-tubular SOFC is developed with the maximum power densities of 440-1000 W m−2 at 450-580 °C. Efforts have been made in enhancing the performance of the cell by reducing the co-sintering temperature and improving the cathode layer and current collection from inner (anode) wall. The improved cell produces maximum power densities of 3400-6800 W m−2 at 550-600 °C, almost fivefold higher than the previous cell. Further improvement has been carried out by reducing thickness of the electrolyte layer. Uniform and defect-free outer electrolyte layer as thin as 10 μm can be achieved when the extrusion rate of the outer layer is controlled. The highest power output of 11,100 W m−2 is obtained for the cell of 10 μm electrolyte layer at 600 °C. This result further highlights the potential of co-extrusion technique in producing high quality dual-layer HF support for micro-tubular SOFC.  相似文献   

7.
Low temperature anode-supported solid oxide fuel cells with thin films of samarium-doped ceria (SDC) as electrolytes, graded porous Ni-SDC anodes and composite La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-SDC cathodes are fabricated and tested with both hydrogen and methanol fuels. Power densities achieved with hydrogen are between 0.56 W cm−2 at 500 °C and 1.09 W cm−2 at 600 °C, and with methanol between 0.26 W cm−2 at 500 °C and 0.82 W cm−2 at 600 °C. The difference in the cell performance can be attributed to variation in the interfacial polarization resistance due to different fuel oxidation kinetics, e.g., 0.21 Ω cm2 for methanol versus 0.10 Ω cm2 for hydrogen at 600 °C. Further analysis suggests that the leakage current densities as high as 0.80 A cm−2 at 600 °C and 0.11 A cm−2 at 500 °C, resulting from the mixed electronic and ionic conductivity in the SDC electrolyte and thus reducing the fuel efficiency, can nonetheless help remove any carbon deposit and thereby ensure stable and coking-free operation of low temperature SOFCs in methanol fuels.  相似文献   

8.
In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 μm SSZ and 4 μm SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm−2 at 650 °C and 0.85 W cm−2 at 700 °C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (Rel) and electrode polarization resistance (Rp,a+c) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O2−x during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the Rel value (0.32 Ω cm2) at 650 °C, which is almost one order of magnitude higher than the calculated value.  相似文献   

9.
In the present study the catalytic steam gasification of MSW to produce hydrogen-rich gas or syngas (H2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. The influence of the catalyst and reactor temperature on yield and product composition was studied at the temperature range of 750–950 °C, with a steam to MSW ratio of 0.77, for weight hourly space velocity of 1.29 h−1. Over the ranges of experimental conditions examined, calcined dolomite revealed better catalytic performance, at the presence of steam, tar was completely decomposed as temperature increases from 850 to 950 °C. Higher temperature resulted in more H2 and CO production, higher carbon conversion efficiency and dry gas yield. The highest H2 content of 53.29 mol%, and the highest H2 yield of 38.60 mol H2/kg MSW were observed at the highest temperature level of 950 °C, while, the maximum H2 yield potential reached 70.14 mol H2/kg dry MSW at 900 °C. Syngas produced by catalytic steam gasification of MSW varied in the range of 36.35–70.21 mol%. The char had a highest ash content of 84.01% at 950 °C, and negligible hydrogen, nitrogen and sulphur contents.  相似文献   

10.
This work describes the manufacture and electrochemical characterization of anode supported microtubular SOFC's (solid oxide fuel cells). The cells consist of a Ni-YSZ anode tube of 400 μm wall-thickness and 2.4 mm inner diameter, a YSZ electrolyte of 15-20 μm thickness and a LSM-YSZ cathode. The microtubular anode supporting tubes were prepared by cold isostatic pressing. The deposition of thin layers of electrolyte and cathode are made by spray coating and dip coating respectively. The cells were electrochemically characterized with polarization curves and complex impedance measurements using 5% H2/95% Ar and 100% of H2, humidified at 3% as reactant gas in the anodic compartment and air in the cathodic one at temperatures between 750 and 900 °C. The complex impedance measurements show an overall resistance from 1 to 0.42 Ω cm2 at temperatures between 750 and 900 °C with polarization of 200 mA cm−2. The I-V measurements show maximum power densities of 0.3-0.7 W cm−2 in the same temperature interval, using pure H2 humidified at 3%. Deterioration in the cathode performance for thin cathodes and high sintering temperatures was observed. They were associated to manganese losses. The cell performance did not present considerable degradation at least after 20 fast shut-down and heating thermal cycles.  相似文献   

11.
A composite electrolyte containing a Li/Na carbonate eutectic and a doped ceria phase is employed in a direct carbon fuel cell (DCFC). A four-layer pellet cell, viz. cathode current collector (silver powder), cathode (lithiated NiO/electrolyte), electrolyte and anode current collector layers (silver powder), is fabricated by a co-pressing and sintering technique. Activated carbon powder is mixed with the composite electrolyte and is retained in the anode cavity above the anode current collector. The performance of the single cell with variation of cathode gas and temperature is examined. With a suitable CO2/O2 ratio of the cathode gas, an operating temperature of 700 °C, a power output of 100 mW cm−2 at a current density of 200 mA cm−2 is obtained. A mechanism of O2− and CO32− binary ionic conduction and the anode electrochemical process is discussed.  相似文献   

12.
Metal-supported solid oxide fuel cells (SOFCs) have been fabricated and characterized in this work. The cells consist of porous NiO-SDC as anode, thin SDC as electrolyte, and SSCo as cathode on porous stainless steel substrate. The anode and electrolyte layers were consecutively deposited onto porous metal substrate by thermal spray, using standard industrial thermal spray equipment, operated in an open-air atmosphere. The cathode materials were applied to the as-sprayed half-cells by screen-printing and heat-treated at 800 °C for 2 h. The cell components and performance were examined by scanning electron microscopy (SEM), X-ray diffraction, leakage test, ac impedance and electrochemical polarization at temperatures between 500 and 700 °C. The half-inch button cells exhibit a maximum power density in excess of 0.50 W cm−2 at 600 °C and 0.92 W cm−2 at 700 °C operated with humidified hydrogen fuel, respectively. The half-inch button cell was run at 0.5 A cm−2 at 603 °C for 100 h. The cell voltage decreased from 0.701 to 0.698 V, giving a cell degradation rate of 4.3% kh−1. Impedance analysis indicated that the cell degradation included 4.5% contribution from ohmic loss and 1.4% contribution from electrode polarization. The 5 cm × 5 cm cells were also fabricated under the same conditions and showed a maximum power density of 0.26 W cm−2 at 600 °C and 0.56 W cm−2 at 700 °C with dry hydrogen as fuel, respectively. The impedance analysis showed that the ohmic resistance of the cells was the major polarization loss for all the cells, while both ohmic and electrode polarizations were significantly increased when the operating temperature decreased from 700 to 500 °C. This work demonstrated the feasibility for the fabrication of metal-supported SOFCs with relatively high performance using industrially available deposition techniques. Further optimization of the metal support, electrode materials and microstructure, and deposition process is ongoing.  相似文献   

13.
In this work, solid oxide fuel cells were fabricated by ink-jet printing. The cells were characterized in order to study the resulting microstructure and electrochemical performance. Scanning electron microscopy revealed a highly conformal 6–12 μm thick dense yttria-stabilized zirconia electrolyte layer, and a porous anode-interlayer. Open circuit voltages ranged from 0.95 to 1.06 V, and a maximum power density of 0.175 W cm−2 was achieved at 750 °C. These results suggest that the ink-jet printing technique may be used to fabricate stable SOFC structures that are comparable to those fabricated by more conventional ceramics processing methods. This study also highlights the significance of overall cell microstructural impact on cell performance and stability.  相似文献   

14.
Carbonized silk fibroin (CS), which is free of metallic elements, showed high catalytic activity for oxygen-reduction reaction (ORR). The catalytic activity of CS for ORR was greatly enhanced by steam activation forming silk-derived activated carbon (CS-AC). The surface morphology, surface area, pore structure and remaining nitrogen species of the CSs were compared with those of the CS-ACs. The open-circuit potential and the power density of a polymer electrolyte fuel cell using a CS900-AC, which was heat-treated at 900 °C prior to the steam activation, and a platinum/C (C: carbon black) anode under pure oxygen and hydrogen gases, respectively, both at 0.2 MPa, were 0.92 V and 142 mW cm−2 at 80 °C. The ORR on the activated carbon, CS900-AC, proceeded with a 3.5-electron reaction at 0.6 V (vs. RHE); however, this was improved to a 3.9-electron reaction with the addition of zirconium oxide at 20 wt% to CS900-AC.  相似文献   

15.
We prepared and characterized several cryogel mesoporous carbons of different pore size distribution and report the catalytic activity of PtRu supported on mesoporous carbons of pore size >15 nm in passive and in active direct methanol fuel cells (DMFCs). At room temperature (RT), the specific maximum power of the passive DMFCs with mesoporous carbon/PtRu systems as anode was in the range 3–5 W g−1. Passive DMFC assembly and RT tests limit the performance of the electrocatalytic systems and the anodes were thus tested in active DMFCs at 30, 60 and 80 °C. Their responses were also compared to those of commercial Vulcan carbon/PtRu. At 80 °C, the specific maximum power of the active DMFC with C656/PtRu was 37 W g−1 and the required amount of Pt per kW estimated at 0.4 V cell voltage was 31 g kW−1, a value less than half that of Vulcan carbon/PtRu.  相似文献   

16.
In this study, a Gd0.1Ce0.9O1.95 (GDC) buffer layer and a Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) cathode, fabricated without pre-sintering, are investigated (unsintered GDC and unsintered BSCF). The effect of the unsintered GDC buffer layer, including the thickness of the layer, on the performance of solid oxide fuel cells (SOFCs) using an unsintered BSCF cathode is studied. The maximum power density of the metal-supported SOFC using an unsintered BSCF cathode without a buffer layer is 0.81 W cm−2, which is measured after 2 h of operation (97% H2 and 3% H2O at the anode and ambient air at the cathode), and it significantly decreases to 0.63 W cm−2 after 50 h. At a relatively low temperature of 800 °C, SrZrO3 and BaZrO3, arising from interaction between BSCF and yttria-stabilized zirconia (YSZ), are detected after 50 h. Introducing a GDC interlayer between the cathode and electrolyte significantly increases the durability of the cell performance, supporting over 1000 h of cell usage with an unsintered GDC buffer layer. Comparable performance is obtained from the anode-supported cell when using an unsintered BSCF cathode with an unsintered GDC buffer layer (0.75 W cm−2) and sintered GDC buffer layer (0.82 W cm−2). When a sintered BSCF cathode is used, however, the performance increases to 1.23 W cm−2. The adhesion between the BSCF cathode and the cell can be enhanced by an unsintered GDC buffer layer, but an increase in the layer thickness (1-6 μm) increases the area specific resistance (ASR) of the cell, and the overly thick buffer layer causes delamination of the BSCF cathode. Finally, the maximum power densities of the metal-supported SOFC using an unsintered BSCF cathode and unsintered GDC buffer layer are 0.78, 0.64, 0.45 and 0.31 W cm−2 at 850, 800, 750 and 700 °C, respectively.  相似文献   

17.
Solid oxide fuel cells (SOFC) using a pulsed laser deposited bi-layer electrolyte have been successfully fabricated and have shown very good performance at low operating temperatures. The cell reaches power densities of 0.5 W cm−2 at 550 °C and 0.9 W cm−2 at 600 °C, with open circuit voltage (OCV) values larger than 1.04 V. The bi-layer electrolyte contains a 6–7 μm thick samarium-doped ceria (SDC) layer deposited over a ∼1 μm thick scandium-stabilized zirconia (ScSZ) layer. The electrical leaking between the anode and cathode through the SDC electrolyte, which due to the reduction of Ce4+ to Ce3+ in reducing environment when using a single layer SDC electrolyte, has been eliminated by adopting the bi-layer electrolyte concept. Both ScSZ and SDC layers in the bi-layer electrolyte prepared by the pulsed laser deposition (PLD) technique are the highly conductive cubic phases. Poor conductive (Zr, Ce)O2-based solid solutions or β-phase ScSZ were not found in the bi-layer electrolyte prepared by the PLD due to low processing temperatures of the technique. Excellent reliability and flexibility of the PLD technique makes it a very promising technique for the fabrication of thin electrolyte layer for SOFCs operating at reduced temperatures.  相似文献   

18.
Thin film solid oxide fuel cells (SOFCs), composed of thin coatings of 8 mol% Y2O3-stabilized ZrO2 (YSZ) and thick substrates of (La0.8Sr0.2)0.98MnO3 (LSM)-YSZ cathodes, are fabricated using the conventional tape casting and tape lamination techniques. Densification of YSZ electrolyte thin films is achieved at 1275 °C by adjusting the cathode tape formulation and sintering characteristics. Two types of copper cermets, CuO-YSZ-ceria and CuO-SDC (Ce0.85Sm0.15O1.925)-ceria, are compared in terms of the anodic performance in hydrogen and propane. Maximum power densities for hydrogen and propane at 800 °C are 0.26 W cm−2 and 0.17 W cm−2 for CuO-YSZ-ceria anodes and 0.35 W cm−2 and 0.22 W cm−2 for CuO-SDC-ceria anodes, respectively. Electrochemical impedance analysis suggests that CuO-SDC-ceria exhibits a much lower anodic polarization resistance than CuO-YSZ-ceria, which could be explained by the intrinsic mixed oxygen ionic and electronic conductivities for SDC in the reducing atmosphere.  相似文献   

19.
Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and gadolinia-doped ceria (GDC) were synthesized via a glycine-nitrate process (GNP). A cubic perovskite of BSCF was observed by X-ray diffraction (XRD) at a calcination temperature above 950 °C. An anode-supported solid-oxide fuel cell was constructed from the porous NiO + YSZ as the anode substrate, the yittria-stabilized zirconia (YSZ) as the electrolyte, and the porous BSCF-GDC layer as the cathode with a GDC barrier layer. For the performance test, the maximum power density was 191.3 mW cm−2 at a temperature of 750 °C with H2 fuel and air at flow rates of 335 and 670 sccm, respectively. According to the AC-impedance data, the charge-transfer resistances of the electrodes were 0.10 and 1.59 Ω cm2, and the oxygen-reduction and oxygen-ion diffusion resistances were 0.69 and 0.98 Ω cm2 at 750 and 600 °C, respectively. SEM microstructural characterization indicated that the fuel cell as fabricated exhibited good compatibility between cathode and electrolyte layers.  相似文献   

20.
This study uses fuel cell gas diffusion layers (GDLs) made from carbon fiber paper containing carbon black in proton exchange membrane fuel cells (PEMFCs) in order to determine the relationship between carbon black content and fuel cell performance. The connection between fuel cell performance and the carbon black content of the carbon fiber paper is discussed, and the effects of carbon black on the carbon fiber paper's thickness, density, and surface resistivity are investigated. When a carbon fiber paper GDL contains 10 wt% phenolic resin and 2% carbon black, and reaction area was 25 cm2 and operating temperature 40 °C, tests show that a carbon electrode fuel cell could achieve 1026.4 mA cm−2 and maximum power of 612.8 mW cm−2 under a 0.5 V load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号