首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration.  相似文献   

2.
The electrolyte of a solid oxide fuel cell (SOFC) is an O2−-ion conductor. The anode must oxidize the fuel with O2− ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H2 and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H2 bond; the oxidation of H2 to H2O occurs at the Ni/electrolyte/H2 triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed.  相似文献   

3.
Ni-LnOx cermets (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd), in which LnOx is not an oxygen ion conductor, have shown high performance as the anodes for low-temperature solid oxide fuel cells (SOFCs) with doped ceria electrolytes. In this work, Ni-Sm2O3 cermets are primarily investigated as the anodes for intermediate-temperature SOFCs with scandia stabilized zirconia (ScSZ) electrolytes. The electrochemical performances of the Ni-Sm2O3 anodes are characterized using single cells with ScSZ electrolytes and LSM-YSB composite cathodes. The Ni-Sm2O3 anodes exhibit relatively lower performance, compared with that reported Ni-SDC (samaria doped ceria) and Ni-YSZ (yttria stabilized zirconia) anodes, the state-of-the-art electrodes for SOFCs based on zirconia electrolytes. The relatively low performance is possibly due to the solid-state reaction between Sm2O3 and ScSZ in fuel cell fabrication processes. By depositing a thin interlayer between the Ni-Sm2O3 anode and the ScSZ electrolyte, the performance is substantially improved. Single cells with a Ni-SDC interlayer show stable open circuit voltage, generate peak power density of 410 mW cm−2 at 700 °C, and the interfacial polarization is about 0.7 Ω cm2.  相似文献   

4.
A low pressure injection molding (LPIM) technique is successfully developed to fabricate porous NiO–YSZ anode substrates for cone-shaped tubular anode-supported solid oxide fuel cells (SOFCs). The porosity and microstructure of the anode samples prepared with different amount of pore formers are investigated through the Archimedes method and SEM analysis. Experimental results show that with 15 wt.% paraffin as plasticizer, porosity of the NiO–YSZ substrates sintered at 1400 °C is proportional to the amount of graphite as pore former, and proper porosities can be obtained with or without 5 wt.% graphite. NiO–YSZ/YSZ/LSM–YSZ single cells are assembled and tested to demonstrate the feasibility of the LPIM technique. At 800 °C, with moist hydrogen (75 ml min−1) as fuel and ambient air as oxidant, the cell with the anode substrate fabricated with 5 wt.% pore former shows a maximum power density of 531 mW cm−2, while the cell without any pore former, 491 mW cm−2. Two of the single cells (without graphite) are applied to assemble a two-cell-stack which gives an open circuit voltage of 1.75 V and a maximum output power of 5.32 W, at operating temperature of 800 °C.  相似文献   

5.
The paper investigates the influence of the La0.6Sr0.4CoO3-δ-Gd0.1Ce0.9O1.95 (LSC-GDC) composite cathode interlayer on the operation of solid oxide fuel cells (SOFCs). Thin composite layers with the different GDC content are obtained by the reactive magnetron sputtering. The impact of the high-temperature annealing on the LSC-GDC phase composition is studied by the X-ray diffraction instrument using additionally a synchrotron radiation. The NiO-YSZ anodes with the YSZ electrolyte thin film and GDC barrier layer are used for the SOFC fabrication. The current-voltage curves and impedance spectra of SOFCs are obtained in the temperature range of 700–800°С. It is shown that not annealed composite layers with ~50 vol% GDC content possess the most efficient electrochemical activity. The maximum power density of the SOFC with the LSC-GDC interlayer is 1322, 1041 and 796 mW/cm2 at 800, 750 and 700 °C, respectively, which is 20–35% higher than that of the cell without cathode interlayer.  相似文献   

6.
A new ceramic-based multi-component material, containing one electronic conductor (Y-substituted SrTiO3, SYT), one ionic conductor (YSZ) and a small amount (∼5 vol.%) of Ni catalyst, was investigated as an alternative anode material for solid oxide fuel cells (SOFCs). The ceramic framework SYT/YSZ shows good dimensional stability upon redox cycling and has an electrical conductivity of ∼10 S cm−1 under typical anode conditions. Owing to the substantial electrocatalytic activity of the fine and well-dispersed Ni particles on the surface of the ceramic framework, the electrode polarization resistance of 5 vol.% Ni-impregnated SYT/YSZ anode reached 0.21 Ω cm2 at 800 °C in wet Ar/5%H2. Based on these results, a redox-stable anode-supported planar SOFC is expected using this anode material, thus offering great advantages over the current generation of Ni/YSZ-based SOFCs.  相似文献   

7.
Solid oxide fuel cells (SOFCs) are electrochemical reactors that can directly convert the chemical energy of a fuel gas into electrical energy with high efficiency and in an environment-friendly way. The recent trends in the research of solid oxide fuel cells concern the use of available hydrocarbon fuels, such as natural gas. The most commonly used anode material Ni/YSZ cermet exhibits some disadvantages when hydrocarbons were used as fuels. Thus it is necessary to develop alternative anode materials which display mixed conductivity under fuel conditions. This article reviews the recent developments of anode in SOFCs with principal emphasis on the material aspects. In addition, the mechanism and kinetics of fuel oxidation reactions are also addressed. Various processes used for the cost-effective fabrication of anode have also been summarized. Finally, this review will be concluded with personal perspectives on the future research directions of this area.  相似文献   

8.
Ceria-based electrolyte materials have great potential in low and intermediate temperature solid oxide fuel cell applications. In the present study, three types of ceria-based nano-composite electrolytes (LNK-SDC, LN-SDC and NK-SDC) were synthesized. One-step co-precipitation method was adopted and different techniques were applied to characterize the obtained ceria-based nano-composite electrolyte materials. TGA, XRD and SEM were used to analyze the thermal effect, crystal structure and morphology of the materials. Cubic fluorite structures have been observed in all composite electrolytes. Furthermore, the crystallite sizes of the LN-SDC, NK-SDC, LNK-SDC were calculated by Scherrer formula and found to be in the range 20 nm, 21 nm and 19 nm, respectively. These values emphasize a good agreement with the SEM results. The ionic conductivities were measured using EIS (Electrochemical Impedance Spectroscopy) with two-probe method and the activation energies were also calculated using Arrhenius plot. The maximum power density was achieved 484 mW/cm2 of LNK-SDC electrolyte at 570 °C using the LiCuZnNi oxide electrodes.  相似文献   

9.
Solid oxide fuel cells (SOFCs) are at the frontline of clean energy generation technologies to convert chemical energy to electricity with high efficiency. In recent years, because of their fuel flexibility, multiple fuels are fed in anode, e.g., hydrogen, ammonia, hydrocarbons, solid carbon, etc.; in addition, these fuels are always mixed with a certain amount of H2S. Perovskite is one of the most important classes of anode materials being investigated in laboratories, these materials to some extent are immune to coke formation and sulfur poisoning when using hydrocarbon fuels, and retain inherent stability upon reduction and oxidation cycling. In this review, recent developments in perovskite anode materials are summarized and future prospects are discussed.  相似文献   

10.
Cobalt-containing cathodes are known for their ability to operate under high-temperature applications in solid oxide fuel cells (SOFCs). Reducing the operation temperature into intermediate temperature-to-low temperature (IT-LT) zones may lead to a mismatch in the thermal expansion coefficient between the cathodes and the developed IT-LTSOFC electrolyte materials. Hence, cathode materials are adjusted to resolve this issue. Studies on IT-LTSOFC propose cobalt-free cathodes as an alternative way to produce high electrochemical performance cells for operation within the IT-LT range. Novel cobalt-free cathode powders are developed using perovskite structured materials, such as strontium ferrite oxide, as the main components together with dopants. This paper reviews various studies on cobalt-free cathode development, including the most important parameter in determining cathode performance, namely, the polarization resistance of SOFC cathodes.  相似文献   

11.
Nickel oxide-yttria stabilized zirconia (NiO-YSZ) thin films were reactively sputter-deposited by pulsed direct current magnetron sputtering from the Ni and ZrY targets onto heated commercial NiO-YSZ substrates. The microstructure and composition of the deposited films were investigated with regard to application as thin anode functional layers (AFLs) for solid oxide fuel cells (SOFCs). The pore size, microstructure and phase composition of both as-deposited and annealed at 1200 °C for 2 h AFLs were studied by scanning electron microscopy and X-ray diffractometry and controlled by changing the deposition process parameters. The results show that annealing in air at 1200 °C is required to improve structural homogeneity of the films. NiO-YSZ films have pores and grains of several hundred nanometers in size after reduction in hydrogen. Adhesion of deposited films was evaluated by scratch test. Anode-supported solid oxide fuel cells with the magnetron sputtered anode functional layer, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were fabricated and tested. Influence of thin anode functional layer on performance of anode-supported SOFCs was studied. It was shown that electrochemical properties of the single fuel cells depend on the NiO volume content in the NiO-YSZ anode functional layer. Microstructural changes of NiO-YSZ layers after nickel reduction-oxidation (redox) cycling were studied. After nine redox cycles at 750 °C in partial oxidation conditions, the cell with the anode NiO-YSZ layer showed stable open circuit voltage values with the power density decrease by 11% only.  相似文献   

12.
Patterned and thin-film electrode experiments are effective in isolating or separating the complex charge and mass transport processes involved in the oxygen reduction reaction within and on the surface of a mixed-conducting solid oxide fuel cell cathode, making it possible to correlate electrochemical performance with electrode geometry, reaction pathway, and limiting steps. Very little information about either the impact of sheet resistance on global response or on effective design of current collector configuration to avoid sheet resistance has been reported to date, however. In this contribution, an empirical numerical model is presented to simulate sheet resistance under various material and catalytic parameters, current collector configurations, and other experimental factors in thin-film, mixed-conducting working electrodes. This model is used to provide general guidance for effective current collector placement by mapping in parameter space. In general, continuous crisscrossing metal lines, deposited through e.g. photolithography, provide the best intra-film current collection while small, regularly spaced discrete contacts, provided by e.g. a metal mesh, provide less efficient intra-film current collection. Most thin-film aspect ratios and current collector configurations can be accommodated without severe intra-film sheet resistance limitation provided the current collectors are spaced appropriately.  相似文献   

13.
A calcium-doped ceria (Ce1-xCaxO2−δ, 0 ≤ x ≤ 0.3) has been applied as a ceramic support in NiMo-based catalysts for an internal reforming tubular solid oxide fuel cell running on isooctane. Introducing calcium into the CeO2-based ceramic was found to improve conductivity of Ce1-xCaxO2−δ. The Ce0.9Ca0.1O2−δ (x = 0.10) sample exhibited an optimum conductivity of 0.045 S cm−1 at 750 °C. The transport of oxygen ions in Ce1-xCaxO2−δ promoted the catalytic partial oxidation of isooctane in the NiMo–Ce1-xCaxO2−δ catalyst, which increased the fuel conversion as well as H2 and CO yields. As a result, the NiMo–Ce0.9Ca0.1O2−δ (x = 0.10) catalyst exhibited a high isooctane conversion of 98%, and the H2 and CO yields achieved 74% and 83%, respectively, for reforming of isooctane and air at the O/C ratio of 1.0 at 750 °C. Furthermore, the NiMo–Ce0.9Ca0.1O2−δ catalyst has been applied as an internal reforming layer for an inert-substrate-supported tubular solid oxide fuel cell running on isooctane/air. Due to its high reforming activity, the single cell presented an initial maximum power density of 355 mW cm−2 in isooctane/air at 750 °C and displayed stable electrochemical performance during ~30 h operation. These results demonstrated the application feasibility of the NiMo–Ce0.9Ca0.1O2−δ catalyst for direct internal reforming solid oxide fuel cells running on isooctane/air.  相似文献   

14.
The Sm0.5Sr0.5CoO3−δ (SSC) fibers with embedded nano-Sm0.2Ce0.8O1.9 (SDC) particles are fabricated by electrospinning process using commercial SDC nanopowders and an SSC precursor gel containing polyvinyl alcohol (PVA) and aqueous metal nitrate. After calcination at 800 °C, fibers with diameters ranged between 300 and 500 nm and well-developed SSC cubic-perovskite structure and SDC fluorite are successfully obtained. The calculated crystallite sizes of SSC and SDC are 20.78 and 45.35 nm, respectively. Over whole measured temperature ranges during the symmetrical cell test, the fiber composite cathode exhibits much lower polarization resistance than conventional powder composite cathodes. The polarization resistances are estimated to 0.06 and 1.23 Ω cm2 for the fiber composites and 0.15 and 2.10 Ω cm2 for the powder composites at 700 and 550 °C, respectively. The single cell with the fiber composite cathode shows much higher performances; its maximum power density is 380.5 mW cm−2 at 550 °C and higher than 1278 mW cm−2 at 700 °C.  相似文献   

15.
The research dealing with performance enhancement by Sm0.5Sr0.5CoO3?δ (SSC) fibrous cathode with embedded Sm0.2Ce0.8O1.9 (SDC) particles has been reported by our previous study. In this paper, in order to assess the feasibility and reliability of this fibrous SSC-SDC cathode as a practical cathode, we conducted the short-term stability test using a half-cell under cathodic polarization treatment to identify the degradation phenomena only at the cathode. The polarization treatment was conducted under the current density of 500 mA/cm2. The stability test was carried out at 700 °C in air under the condition of open circuit. After the measurement, the resistance associated with charge transfer and surface catalytic reaction were increased by 159 and 77%, respectively. The reasons for this degradation can be considered common approaches of perovskites cathode materials such as grain growth and Sr-enrichment. Fortunately, the fibers maintain their original shape, porosity and interfacial adhesion to electrolyte.  相似文献   

16.
This paper describes the development of a process based on high energy milling (or mechanical alloying—MA) of metallic Ni and YSZ at 40 vol% Ni composition for the preparation of solid oxide fuel cell anode material. The cermet powder is consolidated using the surface activated sintering (SAS) method. The cermet pellets possess microstructural characteristics that can potentially lead to higher electrocatalytic activity and fuel reforming capability. In addition to the development of a new processing method for this purpose, a further differential of this work is the addition of Cu in partial substitution of Ni as a means to prevent the formation of carbon on its surface and, hence, the anode’s degradation during service. The prepared powder samples are well dispersed and structured at the nanometric level, showing thin lamellar constituents. Suitable sintered pellets can be obtained from the powders with the required porosity and microstructure. The higher the energy delivered by MA the lower the initial sintering temperature. Activation energies are determined by stepwise isothermal dilatometry (SID) for Ni-YSZ and Ni/Cu-YSZ pellets, involving a 2-step sintering process. The Cu additive promotes sintering and leads to a refined microstructure.  相似文献   

17.
Anode supported solid oxide fuel cells (SOFCs) have been extensively investigated for their ease of fabrication, robustness, and high electrochemical performance. SOFCs offer a greater flexibility in fuel choice, such as methane, ethanol or hydrocarbon fuels, which may be supplied directly on the anode. In this study, SOFCs with an additional Ni–Fe layer on a Ni–YSZ support are fabricated with process variables and characterized for a methane fuel application. The addition of Ni–Fe onto the anode supports exhibits an increase in performance when methane fuel is supplied. SOFC with a Ni–Fe layer, sintered at 1000 °C and fabricated using a 20 wt% pore former, exhibits the highest value of 0.94 A cm−2 and 0.85 A cm−2 at 0.8 V with hydrogen and methane fuel, respectively. An impedance analysis reveals that SOFCs with an additional Ni–Fe layer has a lower charge transfer resistance than SOFCs without Ni–Fe layer. To obtain the higher fuel cell performance with methane fuel, the porosity and sintering temperature of an additional Ni–Fe layer need to be optimized.  相似文献   

18.
Tailoring the surface chemistry of oxides has been widely used to adjust their catalytic behavior in the energy conversion and storage devices. Herein, nanorods of Ni2+-doped ceria (Ce1-xNixO2-δ, x = 0, 0.05, 0.1, 0.15) are synthesized via a modified hydrothermal method, and evaluated as the anode catalysts for reduced-temperature solid oxide fuel cells (SOFCs). X-Ray diffraction patterns of as-synthesized powders in air imply successful incorporation of Ni2+ into the fluorite lattice of ceria for x = 0.05 and 0.1, with a secondary phase of NiO observed for x = 0.15. Transmission electron microscopy (TEM) examination confirms a rod-like morphology with a diameter of 10–13 nm and a length of 55–105 nm. Exposure of these powders in H2 at 600°C results in exsolution of some spherical Ni particles of 11 nm in diameter. Electrochemical measurements on both symmetrical anode fuel cells and functioning cathode-supported fuel cells show an order of the catalytic activity toward hydrogen oxidation - CeO2-δ < Ce0·95Ni0·05O2-δ < Ce0·9Ni0·1O2-δ. The anode polarization resistances in 97% H2 – 3% H2O are 0.24, 0.31 and 0.37 Ω?cm2 for Ce0·9Ni0·1O2-δ, Ce0·95Ni0·05O2-δ and CeO2-δ at 600°C, respectively. Thin (La0·9Sr0.1) (Ga0.8Mg0.2)O3-δ-electrolyte fuel cells with nanostructured SmBa0.5Sr0·5Co2O5+δ cathodes and Ce0·9Ni0·1O2-δ anodes yield the highest power densities among the investigated series of anodes, e.g., 820 mW?cm?2 in 97% H2 – 3% H2O and 598 mW?cm?2 in 68% CH3OH - 32% N2. XPS analyses of reduced nanorods indicate that the highest catalytic activities of Ce0·9Ni0·1O2-δ toward fuel oxidation reactions should be correlated to the presence of highly active Ni nanoparticles and increased surface active oxygen, as confirmed by substantially facilitated extraction of the lattice oxygen on the surface by H2 in temperature-programmed reduction (TPR) measurements.  相似文献   

19.
The fabrication process for anode-supported thin-film solid oxide fuel cells (SOFCs) was investigated by using scalable and cost-effective methods. The anode functional layer (AFL) was introduced on the surface of the substrate to stably deposit the thin-film electrolyte. In previous studies, the AFL has been generally designed to increase the catalytic activity; however, in this study, additional design parameters including the roughness and density were controlled to achieve a pinhole-free thin-film electrolyte and structural stability. Through the developed process, button and large-sized cells were fabricated, and the electrochemical performance evaluation showed potential power density and impedance values at relatively low operating temperature. Microstructural analyses showed that each layer of the AFL, electrolyte, and cathode was uniformly coated on the substrate. The thin-film electrolyte was densely deposited without cracks or pinholes. The electrochemical performance and microstructure confirmed that the developed thin-film SOFCs are reliable and reproducible without costly processes or materials.  相似文献   

20.
Impregnated nanoparticles are very effective in improving the electrochemical performance of solid oxide fuel cell (SOFC) anodes possibly due to the extension of reaction sites and/or the enhancement of catalytic activity. In this work, samaria-doped ceria (SDC), pure ceria, samaria, and alumina oxides impregnated Ni-based anodes are fabricated to compare the site extending and the catalytic effects. Except for alumina, the impregnation of the other three nano-sized oxides could substantially enhance the performance of the anodes for the hydrogen oxidation reactions. Moreover, single cells with CeO2 and Sm2O3 impregnated anodes could exhibit as great performance as those with SDC impregnated anodes. When the impregnation loading reached the optimal value, 1.7 mmol cm−3, these cells exhibit very high performance, with peak power densities around 750 mW cm−2. The high performance of CeO2 and Sm2O3 impregnated anodes demonstrates that the improved performance are mainly attributed to the significantly improved electrochemical activities of the anodes, but not to the extension of triple-phase-boundary, and wet impregnation is indeed an alternative and effective technique to introduce these nano-sized catalytic active oxides into the anode configuration of SOFCs to enhance cell performance, stability and reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号