首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this work structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1−xO2 oxides (x = 0; 0.03; 0.06) prepared by a “soft chemistry” method are presented. The excessive lithium was found to significantly improve transport properties of the materials, a corresponding linear decrease of the unit cell parameters was observed. The electrical conductivity of Li1.03(Mn1/3Co1/3Ni1/3)0.97O2 composition was high enough to use this material in a form of a pellet, without any additives, in lithium batteries and characterize structural and transport properties of deintercalated Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 compounds. For deintercalated samples a linear increase of the lattice parameter c together with a linear decrease of the parameter a with the increasing deintercalation degree occurred, but only up to 0.4-0.5 mol of extracted lithium. Further deintercalation showed a reversal of the trend. Electrical conductivity measurements performed of Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 samples (y = 0.1; 0.3; 0.5; 0.6) showed an ongoing improvement, almost two orders of magnitude, in relation to the starting composition. Additionally, OCV measurements, discharge characteristics and lithium diffusion coefficient measurements were performed for Li/Li+/Li1.03−y(Mn1/3Co1/3Ni1/3)0.97O2 cells.  相似文献   

2.
A (Ni1/3Co1/3Mn1/3)CO3 precursor with an uniform, spherical morphology was prepared by coprecipitation using a continuously stirred tank reactor method. The as-prepared spherical (Ni1/3Co1/3Mn1/3)CO3 precursor served to produce dense, spherical Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 (0 ≤ x ≤ 0.15) cathode materials. These Li-rich cathodes were also prepared by a second synthesis route that involved the use of an M3O4 (M = Ni1/3Co1/3Mn1/3) spinel compound, itself obtained from the carbonate (Ni1/3Co1/3Mn1/3)CO3 precursor. In both cases, the final Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 products were highly uniform, having a narrow particle size distribution (10-μm average particle size) as a result of the homogeneity and spherical morphology of the starting mixed-metal carbonate precursor. The rate capability of the Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 electrode materials, which was significantly improved with increased lithium content, was found to be better in the case of the denser materials made from the spinel precursor compound. This result suggests that spherical morphology, high density, and increased lithium content were key factors in enabling the high rate capabilities, and hence the power performances, of the Li-rich Li1+x(Ni1/3Co1/3Mn1/3)1−xO2 cathodes.  相似文献   

3.
A series of cathode materials with molecular notation of xLi[Li1/3Mn2/3]O2·(1 − x)Li[Ni1/3Mn1/3Co1/3]O2 (0 ≤ x ≤ 0.9) were synthesized by combination of co-precipitation and solid state calcination method. The prepared materials were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques, and their electrochemical performances were investigated. The results showed that sample 0.6Li[Li1/3Mn2/3]O2·0.4Li[Ni1/3Mn1/3Co1/3]O2 (x = 0.6) delivers the highest capacity and shows good capacity-retention, which delivers a capacity ∼250 mAh g−1 between 2.0 and 4.8 V at 18 mA g−1.  相似文献   

4.
Lithium non-stoichiometric Li[Lix(Ni1/3Co1/3Mn1/3)1−x]O2 materials (0 ≤ x ≤ 0.17) were synthesized using a spray drying method. The electrochemical properties and structural stabilities of the synthesized materials were investigated. The synthesized materials exhibited a hexagonal structure in all the x-value and the lattice parameters of the materials were gradually decreased with increasing x-value due to an increasing amount of Ni3+ ions for charge compensation. The capacity retention ability and rate capability of the stoichiometric Li(Ni1/3Co1/3Mn1/3)O2 material were improved by increasing x-value, the so-called overlithiation. We found that the overlithiated materials could keep more structural integrity than the stoichiometric one during electrochemical cyclings, which could be one of reasons for a better electrochemical properties of the overlithiated materials.  相似文献   

5.
We investigated the effect of CO2 on layered Li1+zNi1−xyCoxMyO2 (M = Al, Mn) cathode materials for lithium ion batteries which were prepared by solid-state reactions. Li1+zNi(1−x)/2CoxMn(1−x)/2O2 (Ni/Mn mole ratio = 1) singularly exhibited high storage stability. On the other hand, Li1+zNi0.80Co0.15Al0.05O2 samples were very unstable due to CO2 absorption. XPS and XRD measurements showed the reduction of Ni3+ to Ni2+ and the formation of Li2CO3 for Li1+zNi0.80Co0.15Al0.05O2 samples after CO2 exposure. SEM images also indicated that the surfaces of CO2-treated samples were covered with passivation films, which may contain Li2CO3. The relationship between CO2-exposure time and CO32− content suggests that there are two steps in the carbonation reactions; the first step occurs with the excess Li components, Li2O for example, and the second with LiNi0.80Co0.15Al0.05O2 itself. It is well consistent with the fact that the discharge capacity was not decreased and the capacity retention was improved until the excess lithium is consumed and then fast deterioration occurred.  相似文献   

6.
Layer-structured Zr doped Li[Ni1/3Co1/3Mn1−x/3Zrx/3]O2 (0 ≤ x ≤ 0.05) were synthesized via slurry spray drying method. The powders were characterized by XRD, SEM and galvanostatic charge/discharge tests. The products remained single-phase within the range of 0 ≤ x ≤ 0.03. The charge and discharge cycling of the cells showed that Zr doping enhanced cycle life compared to the bare one, while did not cause the reduction of the discharge capacity of Li[Ni1/3Co1/3Mn1/3]O2. The unchanged peak shape in the differential capacity versus voltage curve suggested that the Zr had the effect to stabilize the structure during cycling. More interestingly, the rate capability was greatly improved. The sample with x = 0.01 presented a capacity of 160.2 mAh g−1 at current density of 640 mA g−1(4 C), corresponding to 92.4% of its capacity at 32 mA g−1(0.2 C). The favorable performance of the doped sample could be attributed to its increased lattice parameter.  相似文献   

7.
In this work structural and transport properties of layered LiNi1−yzCoyMnzO2 (y = 0.25, 0.35, 0.5 and z = 0.1) cathode materials are presented. In the considered group of oxides, LiNi1−yzCoyMnzO2, there is no clear correlation between electrical conductivity and the a parameter (M-M distance in the octahedra layers). A non-monotonic modification of electrical properties of LixNi0.65Co0.25Mn0.1O2 cathode materials is observed upon lithium deintercalation.  相似文献   

8.
Cathode materials prepared by a co-precipitation are 0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (0.2 ≤ x ≤ 0.4) cathode materials with a layered-spinel structure. In the voltage range of 2.0-4.6 V, the cathodes show more than one redox reaction peak during its cyclic voltammogram. The Li/0.3Li2MnO3·0.7LiMn1−xNiyCo0.1O2 (x = 0.3, y = 0.2) cell shows the initial discharge capacity of about 200 mAh g−1. However, when x = 0.2 and y = 0.1, the cell exhibits a rapid decrease in discharge capacity and poor cycle life.  相似文献   

9.
Amorphous LiCo1/3Mn1/3Ni1/3O2 thin films were deposited on the NASICON-type Li-ion conducting glass ceramics, Li1+x+yAlxTi2−xSiyP3−yO12 (LATSP), by radio frequency (RF) magnetron sputtering below 130 °C. The amorphous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Li/PEO18-Li(CF3SO2)2N/LATSP/LiCo1/3Mn1/3Ni1/3O2/Au all-solid-state cells were fabricated to investigate the electrochemical performance of the amorphous films. It was found that the low-temperature deposited amorphous cathode film shows a high discharge voltage and a high discharge capacity of around 130 mAh g−1.  相似文献   

10.
A modified Zr-coating process was introduced to improve the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. The ZrO2-coating was carried out on an intermediate, (Ni1/3Co1/3Mn1/3)(OH)2, rather than on Li(Ni1/3Co1/3Mn1/3)O2. After a heat treatment process, one part of the Zr covered the surface of Li(Ni1/3Co1/3Mn1/3)O2 in the form of a Li2ZrO3 coating layer, and the other part diffused into the crystal lattice of Li(Ni1/3Co1/3Mn1/3)O2. A decreasing gradient distribution in the concentration of Zr was detected from the surface to the bulk of Li(Ni1/3Co1/3Mn1/3)O2 by X-ray photoelectron spectra (XPS). Electrochemical tests indicated that the 1% (Zr/Ni + Co + Mn) ZrO2-modified Li(Ni1/3Co1/3Mn1/3)O2 prepared by this process showed better cyclability and rate capability than bare Li(Ni1/3Co1/3Mn1/3)O2. The result can be ascribed to the special effect of Zr in ZrO2-modified Li(Ni1/3Co1/3Mn1/3)O2. The surface coating layer of Li2ZrO3 improved the cycle performance, while the incorporation of Zr in the crystal lattice of Li(Ni1/3Co1/3Mn1/3)O2 modified the rate capability by increasing the lattice parameters. Electrochemical impedance spectra (EIS) results showed that the increase of charge transfer resistance during cycling was suppressed significantly by ZrO2 modification.  相似文献   

11.
A new type of Li1−xFe0.8Ni0.2O2–LixMnO2 (Mn/(Fe + Ni + Mn) = 0.8) material was synthesized at 350 °C in air atmosphere using a solid-state reaction. The material had an XRD pattern that closely resembled that of the original Li1−xFeO2–LixMnO2 (Mn/(Fe + Mn) = 0.8) with much reduced impurity peaks. The Li/Li1−xFe0.8Ni0.2O2–LixMnO2 cell showed a high initial discharge capacity above 192 mAh g−1, which was higher than that of the parent Li/Li1−xFeO2–LixMnO2 (186 mAh g−1). We expected that the increase of initial discharge capacity and the change of shape of discharge curve for the Li/Li1−xFe0.8Ni0.2O2–LixMnO2 cell is the result from the redox reaction from Ni2+ to Ni3+ during charge/discharge process. This cell exhibited not only a typical voltage plateau in the 2.8 V region, but also an excellent cycle retention rate (96%) up to 45 cycles.  相似文献   

12.
Structural changes and their relationship with thermal stability of charged Li0.33Ni1/3Co1/3Mn1/3O2 cathode samples have been studied using time-resolved X-ray diffraction (TR-XRD) in a wide temperature from 25 to 600 °C with and without the presence of electrolyte in comparison with Li0.27Ni0.8Co0.15Al0.05O2 cathodes. Unique phase transition behavior during heating is found for the Li0.33Ni1/3Co1/3Mn1/3O2 cathode samples: when no electrolyte is present, the initial layered structure changes first to a LiM2O4-type spinel, and then to a M3O4-type spinel and remains in this structure up to 600 °C. For the Li0.33Ni1/3Co1/3Mn1/3O2 cathode sample with electrolyte, additional phase transition from the M3O4-type spinel to the MO-type rock salt phase takes place from about 400 to 441 °C together with the formation of metallic phase at about 460 °C. The major difference between this type of phase transitions and that for Li0.27Ni0.8Co0.15Al0.05O2 in the presence of electrolyte is the delayed phase transition from the spinel-type to the rock salt-type phase by stretching the temperature range of spinel phases from about 20 to 140 °C. This unique behavior is considered as the key factor of the better thermal stability of the Li1−xNi1/3Co1/3Mn1/3O2 cathode materials.  相似文献   

13.
The spherical Li[Ni1/3Co1/3Mn1/3]O2 powders with appropriate porosity, small particle size and good particle size distribution were successfully prepared by a slurry spray drying method. The Li[Ni1/3Co1/3Mn1/3]O2 powders were characterized by XRD, SEM, ICP, BET, EIS and galvanostatic charge/discharge testing. The material calcined at 950 °C had the best electrochemical performance. Its initial discharge capacity was 188.9 mAh g−1 at the discharge rate of 0.2 C (32 mA g−1), and retained 91.4% of the capacity on going from 0.2 to 4 C rate. From the EIS result, it was found that the favorable electrochemical performance of the Li[Ni1/3Co1/3Mn1/3]O2 cathode material was primarily attributed to the particular morphology formed by the spray drying process which was favorable for the charge transfer during the deintercalation and intercalation cycling.  相似文献   

14.
LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are prepared, and their structural and electrochemical properties are investigated using X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetric (DSC) and charge–discharge test. The results show that well-ordering layered LiNi0.6CoxMn0.4−xO2 (x = 0.05, 0.10, 0.15, 0.2) cathode materials are successfully prepared in air at 850 °C. The increase of the Co content in LiNi0.6Mn0.4−xCoxO2 leads to the acceleration of the grain growth, the increase of the initial discharge capacity and the deterioration of the cycling performance of LiNi0.6Mn0.4−xCoxO2. It also leads to the enhancement of the ratio Ni3+/Ni2+ in LiNi0.6CoxMn0.4−xO2, which is approved by the XPS analysis, resulting in the increase of the phase transition during cycling. This is speculated to be main reason for the deteriotion of the cycling performance. All synthesized LiNi0.6CoxMn0.4−xO2 samples charged at 4.3 V show exothermic peaks with an onset temperature of larger than 255 °C, and give out less than 400 J g−1 of total heat flow associated with the peaks in DSC analysis profile, exhibiting better thermal stability. LiNi0.6Co0.05Mn0.35O2 with low Co content and good thermal stability presents a capacity of 156.6 mAh g−1 and 98.5% of initial capacity retention after 50 cycles, showing to be a promising cathode materials for Li-ion batteries.  相似文献   

15.
Cobalt–nickel layered double hydroxides (CoxNi1−x LDHs) were deposited onto stainless steel electrodes by the potentiostatic deposition method at −1.0 V vs. Ag/AgCl using various molar ratios of Co(NO3)2 and Ni(NO3)2 in distilled water. Their structure and surface morphology were studied by using X-ray diffraction analysis, energy dispersive X-ray spectroscopy and scanning electron microscopy. A network of CoxNi1−x LDH nanosheets was obtained. The nature of the cyclic voltammetry and charge–discharge curves suggested that the CoxNi1−x LDHs exist in the form of solid solutions. The capacitive characteristics of the CoxNi1−x LDHs in 1 M KOH electrolyte showed that Co0.72Ni0.28 LDHs had the highest specific capacitance value, 2104 F g−1, which is also the highest yet reported value for oxide materials in general.  相似文献   

16.
The cathode materials Li1−x[Ni0.5Mn1.5]O4 prepared by coprecipitation from acetate solution by oxalic acid and annealing at 900 °C in air had the preferred disordered Ni and Mn on the 16d octahedral sites of a spinel structure. The coprecipitation method provides better crystallinity than the phase previously obtained by quenching from the melt. Polycrystalline octahedral-shaped particles with smooth surfaces contained trace amounts of a LiyNi1−yO impurity that introduced some Mn(III) into the spinel phase. Half-cells cycled at 0.2 C rate between 3.5 and 4.8 V versus Li exhibited a flat voltage V ≈ 4.7 V with a small step at x ≈ 0.5 and a capacity at room temperature of 130 mAh g−1 that showed no fade after 50 cycles. A small capacity fade was initiated with a cut-off voltage ≥4.9 V; a significant capacity loss between 2 and 5 C cycling rates was reversible to 134 mAh g−1 on returning to 0.1 C after 50 cycles at 10 C between 3.5 and 5.0 V.  相似文献   

17.
Prospective positive-electrode (cathode) materials for a lithium secondary battery, viz., Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08), were synthesized using a solid-state pyrolysis method. The structural and electrochemical properties were examined by means of X-ray diffraction, cyclic voltammetry, SEM and charge–discharge tests. The results demonstrated that the powders maintain the α-NaFeO2-type layered structure regardless of the chromium content in the range x ≤ 0.08. The Cr doping of x = 0.04 showed improved capacity and rate capability comparing to undoped Li[Li0.2Ni0.2Mn0.6]O2. ac impedance measurement showed that Cr-doped electrode has the lower impedance value during cycling. It is considered that the higher capacity and superior rate capability of Cr-doping samples would be ascribed to the reduced resistance of the electrode during cycling.  相似文献   

18.
Sub-micro spinel LiNi0.5−xMn1.5+xO4 (x < 0.1) cathode materials powder was successfully synthesized by the ultrasonic-assisted co-precipitation (UACP) method. The structure and electrochemical performance of this as-prepared powder were characterized by powder XRD, SEM, XPS, CV and the galvanostatic charge–discharge test in detail. XRD shows that there is a small LiyNi1−yO impurity peak placed close to the (4 0 0) line of the spinel LiNi0.5−xMn1.5+xO4, and the powders are well crystallized. XPS exhibits that the Mn oxidation state is between +3 and +4, and Ni oxidation state is +2 in LiNi0.5−xMn1.5+xO4. SEM shows that the prepared powders (UACP) have the uniform and narrow size distribution which is less than 200 nm. Galvanostatic charge–discharge test indicates that the initial discharge capacities for the LiNi0.5−xMn1.5+xO4 (UACP) at C/3, 1C and 2C, are 130.2, 119.0 and 110.0 mAh g−1, respectively. After 100 cycles, their capacity retentions are 99.8%, 88.2%, and 73.5%, respectively. LiNi0.5−xMn1.5+xO4 (UACP) at C/3 discharge rate exhibits superior capacity retention upon cycling, and it also shows well high current discharge performance. CV curve implies that LiNi0.5−xMn1.5+xO4 (x < 0.1) spinel synthesized by ultrasonic-assisted co-precipitation method has both reversibility and cycle capability because of the ultrasonic-catalysis.  相似文献   

19.
Combustion synthesized Li(Ni1/3Mn1/3Co1/3)O2 particles are coated with thin, conformal layers of Al2O3 by atomic layer deposition (ALD). XRD, Raman, and FTIR are used to confirm that no change to the bulk, local structure occurs after coating. Electrochemical impedance spectroscopy (EIS) results indicate that the surface of the Li(Ni1/3Mn1/3Co1/3)O2 are protected from dissolution and HF attack after only 4-layers, or ∼8.8 Å of alumina. Electrochemical performance at an upper cutoff of 4.5 V is greatly enhanced after the growth of Al2O3 surface film. Capacity retention is increased from 65% to 91% after 100 cycles at a rate of C/2 with the addition of only two atomic layers. Due to the conformal coating, the effects on Li(Ni1/3Mn1/3Co1/3)O2 overpotential and capacity are negligible below six ALD-layers. We propose that the use of ALD for coating on Li(Ni1/3Mn1/3Co1/3)O2 particles makes the material a stronger replacement candidate for LiCoO2 as a positive electrode in lithium ion batteries.  相似文献   

20.
Li[Ni0.45Co0.1Mn0.45−xZrx]O2 (x = 0, 0.02) was synthesized via co-precipitation method. Partial Zr doping on the host structure of Li[Ni0.45Co0.1Mn0.45]O2 was carried out to improve the electrochemical properties. The Zr-doped Li[Ni0.45Co0.1Mn0.43Zr0.02]O2 was evaluated in terms of specific discharge capacity, cycling performance and thermal stability. The Zr-doped Li[Ni0.45Co0.1Mn0.45−xZr0.02]O2 shows the improved cycling performance and stable thermal stability. The major exothermic reaction was delayed from 252.1 °C to 289.4 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号