首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pt catalyst supported on Vulcan XC-72R containing 5 wt% NiO (Pt/NiO–C) showed larger electrochemical active surface area and higher electrochemical activity for methanol oxidation than Pt catalyst supported on Vulcan XC-72R using polyol method without NiO addition. Prepared Pt/NiO–C electrocatalyst was heat-treated at four temperatures (200, 400, 600, and 800 °C) in flowing N2. X-ray diffraction and temperature-programmed desorption results indicated that NiO was reduced to Ni in inert N2 during heat-treatments at temperatures above or equal to 400 °C, while oxygen from NiO reacted with carbon support due to the catalytic effect of Pt. The reduced Ni formed an alloy with Pt, which, according to the X-ray photoelectron spectroscopy data, resulted in a shift to a lower binding energy of Pt 4f electrons. The Pt/NiO–C electrocatalyst heat-treated at 400 °C showed the best activity in methanol oxidation due to the change in Pt electronic structure by Ni and the minimal aggregation of Pt particles.  相似文献   

2.
Pt nanoparticles are deposited onto graphene sheets via synchronous reduction of H2PtCl6 and graphene oxide (GO) suspension using NaBH4. Lyophilization is introduced to avoid irreversible aggregation of graphene (G) sheets, which happens during conventional drying process. Pt/G catalysts reveal a high catalytic activity for both methanol oxidation and oxygen reduction reaction compared to Pt supported on carbon black (Pt/C). The performance of Pt/G catalysts is further improved after heat treatment in N2 atmosphere at 300 °C for 2 h, and the peak current density of methanol oxidation for Pt/G after heat treatment is almost 3.5 times higher than Pt/C. Transmission electron microscope (TEM) images show that the Pt particles are uniformly distributed on graphene sheets. X-ray photoelectron spectroscopy (XPS) results demonstrate that the interaction between Pt and graphene is enhanced during annealing. It suggests that graphene has provided a new way to improve electrocatalytic activity of catalyst for fuel cell.  相似文献   

3.
Titania nanotubes (TiNTs) were prepared by electrochemical anodization and were used as a support for depositing Pt. After annealing the TiNTs changed to crystalline anatase phase and were doped with carbon. The TiNTs/Pt/C was tested as electrode for electrochemical catalysis of methanol oxidation. The composite catalyst activities were measured by cyclic voltammetry in 1 M CH3OH + 1 M H2SO4. The results demonstrated that TiNTs/Pt/C can greatly enhance the catalytic activity of methanol oxidation. The CO stripping led to the increase in the current peak of methanol oxidation due to activating the catalyst surface by point defect formation. Moreover, the higher ratio of the forward anodic peak current to the reverse anodic peak current indicates more effective removal of the poisonous species.  相似文献   

4.
Pd nanoparticles supported on WO3/C hybrid material have been developed as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells. The resultant Pd–WO3/C catalyst has an ORR activity comparable to the commercial Pt/C catalyst and a higher activity than the Pd/C catalyst prepared with the same method. Based on the physical and electrochemical characterizations, the improvement in the catalytic performance may be attributed to the small particle sizes and uniform dispersion of Pd on the WO3/C, the strong interaction between Pd and WO3 and the formation of hydrogen tungsten bronze which effectively promote the direct 4-electron pathway of the ORR at Pd.  相似文献   

5.
A Pt-Nb2O5/C electrocatalyst was synthesized by a two-step process as an anode material in direct methanol fuel cell (DMFC). The Pt-Nb2O5/C catalysts heat-treated at different temperatures (400 and 500 °C) in flowing N2 were characterized by various methods such as inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoemission spectroscopy (XPS). The heat-treated Pt-Nb2O5/C catalyst at 400 °C showed the best electrochemical activity for CO and methanol oxidations among the prepared catalysts. The XPS results showed the electronic structure change of Pt, indicating a formation of interaction between Pt and Nb2O5. It is suggested that a synergistic effect between Pt and Nb2O5 enhances the electrocatalytic activity for CO and methanol oxidations. We believe that Nb2O5-promoted Pt/C catalyst may be regarded as one of the attractive candidates as an anode material in DMFC.  相似文献   

6.
The electrochemical stability of tungsten carbide (WC), Pt-modified WC, molybdenum carbide (Mo2C), and Pt-modified Mo2C has been examined using an in situ electrochemical half-cell in combination with X-ray photoelectron spectroscopy (XPS). The WC surface, created via the carburization of a tungsten foil, was electrochemically stable to ∼0.8 V with respect to the normal hydrogen electrode (NHE) when exposed to dilute sulfuric acid. At higher potentials, XPS confirmed the surface oxidation of WC to form WxOy species. The deposition of submonolayer coverage of Pt on the WC surface increased the region of stability of WC, extending the onset of catalyst oxidation to ∼1.0 V (NHE). These results suggest that both WC and Pt/WC have the potential to be used as anode electrocatalysts. In contrast, both Mo2C and Pt-modified Mo2C underwent oxidation at ∼0.4 V (NHE), indicating that molybdenum carbides are not stable enough for applications as anode electrocatalysts.  相似文献   

7.
Two Core-Shell, RuCore-PtShell and IrNiCore-PtRuShell, XC72-supported catalyst were synthesized in a two-step deposition process with NaBH4 as reducing agent. The structure and composition of the Core-Shell catalysts were determined by EDS, XPS and XRD. Electrochemical characterization was performed with the use of cyclic voltammetry. Methanol and ethylene glycol oxidation activities of the Core-Shell catalysts (in terms of surface and mass activities) were studied at 80 °C and compared to those of a commercial Pt-Ru alloy catalyst. The surface activity of the alloy based catalyst, in the case of methanol oxidation, was found to be superior as a result of optimized surface Pt:Ru composition. However, the mass activity of the PtRu/IrNi/XC72 was higher than that of the alloy based catalyst by ∼50%. Regarding ethylene glycol oxidation, while the surface activity of the alloy based catalyst was slightly higher than that of the Pt/Ru/XC72 catalyst, the latter showed ∼66% higher activities in terms of A g−1 of Pt. These results show the potential of Core-Shell catalysts for reducing the cost of catalysts for DMFC and DEGFC.  相似文献   

8.
The Pt nanoparticles have been well dispersed on electrospinning-derived carbon fibrous mats (CFMs) by using formaldehyde vapor as reducer to react with H2PtCl6·6H2O adsorbed on the CFMs at 160 °C. The prepared electrodes of Pt-CFMs have been characterized by using scanning electron microscopy, transmission electron microscopy and X-ray diffraction spectroscopy, and the performance of the electrodes for methanol oxidation has been investigated by using cyclic voltammetry, chronoamperometry, quasi-steady state polarization and electrochemical impedance spectroscopy techniques. The results demonstrate that Pt-CFMs electrodes exhibit peak current density of 445 mA mg−1 Pt, exchange current of 235.7 μA cm−2, charge transfer resistance of 16.1 Ω cm2 and better stability during the process of methanol oxidation, which are superior to the peak current density of 194 mA mg−1 Pt, exchange current of 174.7 μA cm−2 and charge transfer resistance of 39.4 Ω cm2 obtained for commercial Pt/C supported on CFMs. It indicates that the novel process in which formaldehyde vapor is used as reducer to prepare Pt catalyst with high performance can be developed.  相似文献   

9.
We report a comparative study of the alloy formation and electrochemical activity of dealloyed PtCo3 and PtCu3 nanoparticle electrocatalysts for the oxygen reduction reaction (ORR). For the Pt-Co system the maximum annealing temperatures were 650 °C, 800 °C and 900 °C for 7 h to drive the Pt-Co alloy formation and the particle growth. EDS and XRD were employed for the characterization of catalyst powders. The RDE and RRDE experiments were conducted in 0.1 M HClO4 at room temperature.We demonstrate that the mass and surface area specific ORR activities of Pt-Co and Pt-Cu alloys after voltammetric activation exhibit a considerable improvement compared to those of pure Pt/C. The dealloyed PtCo3 (800 °C/7 h) electrocatalyst performs 3 times higher in terms of Pt-based mass activity and 4-5 times higher in terms of ECSA-based specific activity than a 28.2 wt.% Pt/C. Dealloyed Pt-Co catalysts (800 °C/7 h) show the most favorable balance between mass and specific ORR activity with a particle size of 2.2 ± 0.1 nm. We hypothesize that geometric strain effects of the dealloyed Pt-Co nanoparticles, similar to those found in dealloyed PtCu3 nanoparticles, are responsible for the improvement in ORR activity [1].  相似文献   

10.
Hybrid catalysts comprising of ceramic, metal, and carbon phase were synthesized by incorporating titanium and cerium oxides into PtRu/C commercial catalyst using an in-situ combustion followed by heat treatment at 600 °C. The structure dependent electrochemical behavior of as-synthesized and heat-treated materials towards methanol oxidation, carbon dioxide (CO) tolerance and chemical stability was studied by XRD, HRTEM, BET, EDS, cyclic voltammetry, chronoamperometry, and CO-stripping method. As a result of heat treatment, amorphous phase of metal oxides was transformed into a crystalline phase with particle size of about 3–7 nm. Improved methanol oxidation activity of the hybrid catalysts was compared to PtRu/C catalyst as a baseline and explained by the changes in Pt electronic behavior and excess adsorption of OH-ions. When heat-treated at 600 °C, CeO2-PtRu/C demonstrated the highest mass activity of 580 mA/mg (∼3×  that of PtRu/C) compared to TiO2-PtRu/C (394 mA/mg). Heat-treated hybrid catalysts exhibited higher methanol oxidation activity at higher peak potentials than the corresponding as-synthesized materials. However, as-synthesized hybrid catalysts display higher CO-tolerance, lower CO-oxidation onset potentials, and better chemical stability in comparison to corresponding heat-treated catalysts. To explain the difference, a mechanism for ceramic oxide structure dependent electrochemical behavior of the hybrid catalysts is proposed and discussed.  相似文献   

11.
Tungsten oxide (WO3) nanorods are synthesized using an Anodisc alumina membrane as a template and platinum nanoparticles are supported on the nanorods. The nanorods, serving as platinum catalyst supports, are characterized by electron microscopy and by electrochemical analysis. Methanol oxidation on the prepared electrodes is studied by means of cyclic voltammetry and chronopotentiometry. A film of Pt/WO3 nanorods on a glassy carbon electrode exhibits good electrocatalytic activity towards the oxidation of methanol. High electrocatalytic activities and good stabilities are attributed to a synergistic effect between Pt and WO3 that avoids poisoning of the electrodes.  相似文献   

12.
The performance of high temperature polymer electrolyte fuel cell (HT-PEMFC) using platinum supported over tin oxide and Vulcan carbon (Pt/SnOx/C) as cathode catalyst was evaluated at 160-200 °C and compared with Pt/C. This paper reports first time the Pt/SnOx/C preparation, fuel cell performance, and durability test up to 200 h. Pt/SnOx/C of varying SnO compositions were characterized using XRD, SEM, TEM, EDX and EIS. The face-centered cubic structure of nanosized Pt becomes evident from XRD data. TEM and EDX measurements established that the average size of the Pt nanoparticles were ∼6 nm. Low ionic resistances were derived from EIS, which ranged from 0.5 to 5 Ω-cm2 for cathode and 0.05 to 0.1 Ω-cm2 for phosphoric acid, doped PBI membrane. The addition of the SnOx to Pt/C significantly promoted the catalytic activity for the oxygen reduction reaction (ORR). The 7 wt.% SnO in Pt/SnO2/C catalyst showed the highest electro-oxidation activity for ORR. High temperature PEMFC measurements performed at 180 °C under dry gases (H2 and O2) showed 0.58 V at a current density of 200 mA cm−2, while only 0.40 V was obtained in the case of Pt/C catalyst. When the catalyst contained higher concentrations of tin oxide, the performance decreased as a result of mass transport limitations within the electrode. Durability tests showed that Pt/SnOx/C catalysts prepared in this work were stable under fuel cell working conditions, during 200 h at 180 °C demonstrate as potential cathode catalyst for HT-PEMFCs.  相似文献   

13.
The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H2SO4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.  相似文献   

14.
Conductive perovskite type lanthanum nickelate (LaNiO3) powders are prepared through a nitrilotriacetic acid (NTA) precursor complex route. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) results indicate complete decomposition of the precursor complex to LaNiO3 at 900 °C in 4 h. Powder X-ray diffraction (XRD) patterns confirm the formation of the perovskite. Scanning electron microscopic (SEM) analysis and particle size determination reveal the formation of micron-sized particles, probably by the agglomeration of nanoparticles of LaNiO3. Cyclic voltammetry (CV) is used to assess the electrochemical activity of LaNiO3 in comparison with Pt/C, as well as the addition of small amounts of Pt/C to LaNiO3 or a Vulcan XC-72R carbon support of three different compositions, towards methanol electro-oxidation. LaNiO3 does not show much activity for methanol oxidation. However, a synergistic effect is observed when LaNiO3 is mixed with small amounts of Pt/C. The increased oxidation current due to the addition of LaNiO3 to small amounts of Pt/C in the three mixtures containing LaNiO3 is attributed to either the additional catalyst site of the perovskite in addition to the Pt site, or the removal of CO poisoning on the Pt surface by the surface oxygen of the adjacent perovskite.  相似文献   

15.
Carbon supported Pt-Cu bimetallic nanoparticles are prepared by a modified NaBH4 reduction method in aqueous solution and used as the anode electrocatalyst of direct borohydride-hydrogen peroxide fuel cell (DBHFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP) and fuel cell test. The results show that the carbon supported Pt-Cu bimetallic catalysts have much higher catalytic activity for the direct oxidation of BH4 than the carbon supported pure nanosized Pt catalyst, especially the Pt50Cu50/C catalyst presents the highest catalytic activity among all as-prepared catalysts, and the DBHFC using Pt50Cu50/C as anode electrocatalyst and Pt/C as cathode electrocatalyst shows as high as 71.6 mW cm−2 power density at a discharge current density of 54.7 mA cm−2 at 25 °C.  相似文献   

16.
PtRuMoOx and PtRuWOx catalysts supported on multi-wall carbon nanotubes (MWCNTs) are prepared by ultrasonic-assisted chemical reduction method. XRD measurements indicate that Pt exists as face-centered cubic structure, Ru is alloyed with platinum, and the metal oxides exist as an amorphous structure. TEM pictures show that PtRuMoOx and PtRuWOx catalysts are well dispersed on the surface of MWCNTs with the particle size of about 3 nm and a narrow particle size distribution. The electrochemical properties of the catalysts for methanol electrooxidation are studied by cyclic voltammetry (CV), chronoamperometry (CA) and chronopotentiometry (CP). The onset potentials for methanol oxidation on PtRuMoOx and PtRuWOx are more negative than that of pure Pt catalyst, shifting negatively by about 0.20 V and have better electrocatalytic activities than PtRu/MWCNTs.  相似文献   

17.
The electrooxidation of ethanol on a Pt/Vulcan catalyst was investigated in model studies by on-line differential electrochemical mass spectrometry (DEMS) over a wide range of reaction temperatures (23–100 °C). Potentiodynamic and potentiostatic measurements of the Faradaic current and the CO2 formation rate, performed at 3 bar overpressure under well-defined transport and diffusion conditions reveal significant effects of temperature, potential and ethanol concentration on the total reaction activity and on the selectivity for the pathway toward complete oxidation to CO2. The latter pathway increasingly prevails at higher temperature, lower concentration and lower potentials (∼90% current efficiency for CO2 formation at 100 °C, 0.01 M, 0.48 V), while at higher ethanol concentrations (0.1 M), higher potentials or lower temperatures the current efficiency for CO2 formation drops, reaching values of a few percent at room temperature. These trends result in a significantly higher apparent activation barrier for complete oxidation to CO2 (68 ± 2 kJ mol−1 at 0.48 V, 0.1 M) compared to that of the overall ethanol oxidation reaction determined from the Faradaic current (42 ± 2 kJ mol−1 at 0.48 V, 0.1 M). The mechanistic implications of these results and the importance of relevant reaction and mass transport conditions in model studies for reaction predictions in fuel cell applications are discussed.  相似文献   

18.
Preparation and characterization of a platinum (Pt)-based catalyst using a redox polymer, poly(vinylferrocenium) (PVF+), as the support material was described. Pt was obtained from aqueous solution of K2PtCl4 in the complex form. Pt particles were reduced by chemical and electrochemical means. Chemical reduction was performed using aqueous hydrazine solution and electrochemical reduction was carried out in H2SO4 solution. The Pt/PVF+ catalyst system showed catalytic activity towards methanol oxidation. Cyclic voltammetry was used for the electrochemical characterization of the catalyst system. Scanning electron microscopy (SEM) images and energy dispersive X-ray spectrum (EDS) of the catalyst system were also recorded. The system was tested in a single fuel cell configuration at ambient temperature and atmospheric pressure. The open circuit voltage (OCV) was 680 mV for the system and the maximum power density was 0.31 mW cm−2 at a current density of 0.63 mA cm−2. Catalytic activity of Pt/PVF+ system towards methanol oxidation was comparable with the related catalysts in the literature.  相似文献   

19.
《Journal of power sources》2006,157(1):217-221
Tungsten trioxide microspheres of 2–4 μm diameter have been prepared by controlled oxidation of tungsten carbide microspheres. These microspheres are characterized by XRD, SEM, and HRTEM. The microspheres are made of WO3 nanoparticles with an average diameter of around 15 nm. Platinum supported on these WO3 microspheres exhibits higher and stable electrocatalytic activity for methanol oxidation by a factor of around two, than commercial 20 wt.% Pt–Ru/Vulcan-XC72 carbon and 20 wt.% Pt–Ru/carbon microspheres even without Ru. The higher activity is attributed to the better tolerance to carbon monoxide of the Pt/WO3 catalyst. These Pt/WO3 microspheres appear to be a promising alternative anode material for direct methanol fuel cells. They replace Ru entirely and save a substantial amount of Pt in the Pt–Ru electrode that is presently employed in fluel cells.  相似文献   

20.
The microfibrous structured catalytic packings for miniature fuel processor consisting of a methanol steam reformer and a subsequent CO cleanup train has been investigated experimentally. A highly void and tailorable sinter-locked microfibrous carrier consisting of 3.5 vol% 8 μm diameter Ni-fibers is used to entrap 35 vol% 150-250 μm catalyst particulates for both methanol steam reforming (MSR) and CO preferential oxidation (PROX). We demonstrate a microfibrous entrapped Pd-ZnO/Al2O3 catalyst packings for high efficiency hydrogen production by the MSR reaction. The use of microfibrous entrapment technology significantly enhances the catalyst utilization efficiency by a 4-fold improvement of the weight hourly space velocity (WHSV), compared to the single Pd-ZnO/Al2O3 particulates as keeping the methanol conversion at >98%. The microfibrous entrapped Pt-Co/Al2O3 catalyst packings can drive the CO from 2% down to <50 ppm at 150 °C with O2/CO ratio of 1 using a gas hourly space velocity (GHSV) of 32,000 h−1. Finally, a prototype fuel processor system integrating MSR reformer and CO PROX train is demonstrated as three reactors in series. Such test rig is capable of producing roughly 1700 standard cubic centimeter per minute (sccm) PEMFC-grade H2 (equivalent to ∼163 W of electric power) in a longer-term test, in which the MSR reactor is operated at 300 °C using a methanol/water (1/1.1, mole) mixture WHSV of 9 h−1 and CO PROX reactors at 150 °C using an O2/CO molar ratio of 1.3, respectively. In the test of this prototype system, MSR reactor delivers >97% methanol conversion throughout the entire 1200-h test; the CO cleanup train placed in line after 800-h MSR illustrates the capability to decrease the CO concentration from ∼3.5% to ∼1% at PROX-1 and then to less than 20 ppm at PROX-2 until to the end of test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号