首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The membrane electric transport (MC) directly influences the performance of the polymer electrolyte fuel cells (PEMFC). The membrane conductivity is determined by a number of parameters such as: hydration technique, graphite cell geometry and pressure applied when the membrane electrode assembly (MEA) is joined. In addition, the membrane conductivity might be influenced by the electrode position due to the possibility of anisotropic electric conductivity.  相似文献   

2.
In this work, the effect on the physico-chemical properties of Nafion 117 membrane due to the treatment with HCl, H2SO4 and HNO3 was studied. Water uptake, crystallinity, proton conductivity and water dynamics were evaluated on treated and non-treated membranes. An increase in the water uptake and conductivity and a decrease in the crystallinity were observed in treated membranes in comparison with the untreated one. The water dynamics, studied by spin-spin NMR relaxometry, suggests that treated membranes have a more uniform channel size distribution. The treatment with HCl and HNO3 showed higher conductivity and water uptake than H2SO4.  相似文献   

3.
We investigate oxygen permeation through Nafion 117 membrane in a direct ethanol fuel cell and elucidate how it affects the fuel cell efficiency. An obvious symptom of oxygen permeation is the presence of significant amounts of acetaldehyde and acetic acid in the mixture leaving anode when no current was drawn from the fuel cell (i.e. under the open circuit conditions). This parasitic process severely lowers efficiency of the fuel cell because ethanol is found to be directly oxidized on the surface of catalyst by oxygen coming through membrane from cathode in the absence of electric current flowing in the external circuit. Three commonly used carbon-supported anode catalysts are investigated, Pt, Pt/Ru and Pt/Sn. Products of ethanol oxidation are determined qualitatively and quantitatively at open circuit as a function of temperature and pressure, and we aim at determining whether the oxygen permeation or the catalyst's activity limits the parasitic ethanol oxidation. Our results strongly imply the need to develop more selective membranes that would be less oxygen permeable.  相似文献   

4.
Nafion 112 membranes were soaked in 1 M H2SO4 solutions containing variable amounts of Fe and Cr ions, either individually or mixed. An even distribution of the metal ions on the surface of the membranes was observed with electron probe microanalysis (EPMA) mapping. The proton conductivity of the soaked membranes was investigated using a conductivity cell. For Fe ions, the conductivity was almost constant until the Fe-ion solution concentration reached 300 ppm. Over the 300-ppm threshold, the conductivity decreased significantly. Similar results were obtained with Cr ions in the membrane, but here the threshold was approximately 200 ppm in the solution. Mixed metal ions were found to decrease these threshold values due to the additive effect of the two metals.  相似文献   

5.
Two gas diffusion layers based on the same carbon cloth substrate, produced by an Italian Company (SAATI), and coated with microporous layers of different hydrophobicities, were assembled in a polymer electrolyte membrane fuel cell and its performances assessed. For comparison the cell mounting the carbon cloth without microporous layer was also tested. The membrane electrode assembly was made of Nafion® 212 with Pt load 0.3/0.6 mg cm−2 (anode/cathode). The cell testing was run at 60 °C and 80 °C with fully humidified air (100%RH) and 80%RH hydrogen feedings. The assembly of gas diffusion layers and membrane with electrodes was compressed to 30% and 50% of its initial thickness. For each configuration polarization and power curves were recorded; in order to evaluate the role of different GDLs, AC impedance spectroscopy of the running cell was also performed.The higher compression ratio caused the worsening of cell performances, partially mitigated when the operating temperature was raised to 80 °C. The presence of the microporous layer onto the carbon cloth resulted extremely beneficial for the operations especially at high current density; moreover, it sensibly reduces the high frequency resistance of the overall assembly.  相似文献   

6.
Membrane-electrode assemblies (MEAs) were fabricated by the decal transfer method with various Nafion ionomer contents (10–40 wt%) and their single cell performance and electrochemical characteristics were examined in atmospheric air at relative humidities of 25–95%. At high humidity (95%), the MEA performance was the highest with a cathode ionomer content of 30 and 20 wt% at 0.6 and 0.4 V, respectively. The optimum ionomer content of the decal MEAs increased with decreasing humidity, because of the change in the oxygen transport rate (water flooding) and number of active sites (ionic resistance). The concentration overpotential gradually increased with relative humidity up to about 0.4 V at 0.8 A/cm2, which was not considered in previous studies using pressurized air and oxygen. The combined effect of the electrochemical active surface area and ionic resistance of the cathodes on the activation overpotential was also investigated, focusing on intermediate and low humidity levels, using a newly developed impedance analysis method.  相似文献   

7.
The dynamics and spatial distribution of water molecules in Nafion 117 membrane has been investigated by 1H NMR. To this end, 1D and 2D spin-spin (T2) relaxometry experiments were carried out as a function of the relative humidity ranging from 9 to 100%. The inverse Laplace transform was successfully applied to obtain the 1D T2 distributions and 2D relaxation maps. The 1D T2 distributions show two peaks at low RH and mainly one at high water content, which can be associated with the rearrangement of the exchange sites inside the polymeric channels with the amount of water. From the T2 distribution at 70% RH three types of water were identified corresponding to different degree of molecular mobility. The 2D T2-T2 maps show molecular exchange between the two water populations found at low RH, while at 70% the exchange between only the two more mobile water populations takes place.  相似文献   

8.
The influence of humidity, cell temperature and gas-phase O2 on the electrochemical corrosion of carbon in polymer electrolyte membrane fuel cells is investigated by measuring CO2 emission at a constant potential of 1.4 V for 30 min using on-line mass spectrometry. Carbon corrosion shows a strong positive correlation with humidity and cell temperature. The presence of water is indispensable for electrochemical carbon corrosion. By contrast, the presence of gas-phase O2 has little effect on electrochemical carbon corrosion. With increased carbon corrosion, changes in fuel cell electrochemical characteristics become more prominent and thereby indicate that such corrosion significantly affects fuel cell durability.  相似文献   

9.
In this study, proton conducting Nafion-poly(1-vinyl-1,2,4-triazole) blends are produced. Nafion/polymer blend membranes are prepared by means of film casting from the Nafion-PVTri solutions at several molar ratios of PVTri repeat unit to -SO3H. The chemical structure of the homopolymer PVTri is confirmed by FT-IR and 13C NMR. Thermal properties are investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and the results illustrated that all these Nafion-PVTri electrolytes are thermally stable at least up to 300 °C. The membrane properties are further characterized for their morphology by scanning electron microscopy (SEM) and water uptake measurements. The methanol permeability of these membranes is measured and the results exhibited that they have quite lower methanol permeability compared to pristine Nafion112. The electrochemical properties of PVTri are investigated by cyclic voltammetry. The conductivity of Nafion-P(VTri)1 blend membranes is measured to be 5.3 × 10−4 S cm−1 at 220 °C, in anhydrous state. The conductivity of blend increased at least three orders of magnitude up on hydration, i.e., exceeding 10−3 S cm−1 with RH = 50% at ambient temperature.  相似文献   

10.
Capillary pressure vs. saturation (PC(SL)) curves are fundamental to understanding liquid water transport and flooding in PEM gas diffusion layers (GDLs). PC(SL) curves convolute the influence of GDL pore geometry and internal contact angles at the three-phase liquid/solid/gas boundary. Even simple GDL materials are a spatially non-uniform mixture of carbon fiber and binder, making a Gaussian distribution of contact angles likely, based on the Cassie–Baxter equation. For a given Gaussian contact angle distribution with mean (θMean) and standard deviation (σ), a realistic PC(SL) curve can be computed using a bundle of capillaries model and GDL pore size distribution data. As expected, computed PC(SL) curves show that θMean sets the overall hydrophilic (θMean < 90°) or hydrophobic (θMean > 90°) character of the GDL (i.e., liquid saturation level at a given capillary pressure), and σ affects the slope of the PC(SL) curve. The capillary bundle model also can be used with (θMean, σ) as unknown parameters that are best-fit to experimentally acquired PC(SL) and pore size distribution data to find (θMean, σ) values for actual GDL materials. To test this, pore size distribution data was acquired for Toray TGP-H-090 along with hysteretic liquid and gas intrusion capillary pressure curve data. High quality best-fits were found between the model and combined datasets, with GDL liquid intrusion showing fairly neutral internal surface wetting properties (θMean = 92° and σ = 10°) whereas gas intrusion displayed a hydrophilic character (θMean = 52° and σ = 8°). External liquid advancing and receding contact angles were also measured on this same material and they also showed major hysteresis. The new methods described here open the door for better understanding of the link between GDL material processing and the wetting properties that affect flooding.  相似文献   

11.
The glass transition temperature (Tg) of the Nafion 117 membrane was traced by DSC step by step during the preparation of the membrane electrode assembly (MEA). Wide-angle x-ray diffraction and frequency response analysis were used for the determination of the crystallinity and proton conductivity of the membrane. As-received Nafion 117 membrane showed two glass transition temperatures in the DSC thermogram. The first Tg, caused by the mobility of the main chain in the polymer matrix, was 125 °C; the second Tg, derived from the side chain due to the strong interaction between the sulfonic acid functional groups, was 195 °C. During the pretreatment of the membrane, the Tg of the Nafion 117 membrane drastically decreased because of the plasticizer effect of water. In the hot-pressing process, the Tg of the Nafion 117 membrane gradually increased due to the loss of water. When the Nafion 117 was completely dried, the Tg of the membrane finally reached 132 °C. Thermal heat treatment was then applied to the MEA to obtain high interfacial stability; however, the membrane developed a crystalline morphology that led to reduced water uptake and proton conductivity. Therefore, the thermal heat treatment of the MEA should be carefully controlled in the region of the glass transition temperature (120–140 °C) of the Nafion 117 membrane to ensure the high performance of the MEA.  相似文献   

12.
13.
In this paper thermal properties for materials typically used in the proton exchange membrane fuel cell (PEMFC) are reported. Thermal conductivities of Nafion membranes were measured ex situ at 20 °C to be 0.177 ± 0.008 and 0.254 ± 0.016 W K−1 m−1 for dry and maximally wetted membranes respectively. This paper also presents a methodology to determine the thermal conductivity of compressible materials as a function of applied load. This technique was used to measure the thermal conductivity of an uncoated SolviCore porous transport layer (PTL) at various compaction pressures. For the dry PTL at 4.6, 9.3 and 13.9 bar compaction pressures, the thermal conductivity was found to be 0.27, 0.36 and 0.40 W K−1 m−1 respectively and the thermal contact resistivity to the apparatus was determined to be 2.1, 1.8 and 1.1 × 10−4 m2 K W−1, respectively. It was shown that the thermal contact resistance between two PTLs is negligible compared to the apparatus’ thermal contact resistivity. For a humidified PTL, the thermal conductivity increases by up to 70% due to a residual liquid saturation of 25%.  相似文献   

14.
Nanoheterostructured material composed of sepiolite clay mineral in which is assembled a MgAl layered double hydroxide (LDH) was used in the preparation of Nafion composite electrolyte membranes and their behavior compared to those of membranes filled with the LDH alone. Both, the neat MgAl LDH and the MgAl LDH-sepiolite hybrid materials were obtained via the co-precipitation method. Sepiolite fibers provide a large external surface area for bonding MgAl LDH particles while maintaining high microporosity and water molecules. The nanocomposite membranes were prepared incorporating different amount of LDH or LDH-sepiolite hybrid. Composite membranes present better water retention, good thermal properties and high proton conductivities at high temperatures than the pure Nafion membrane. The proton conductivity at 100 °C and 100% RH reaches a value of 0.13 S/cm for the LDH-sepiolite Nafion membrane whereas is only 0.010 S/cm in the case of the Nafion membrane. Fuel cell tests using Nafion membranes containing LDH or LDH-sepiolite hybrid as composite electrolytes show a good result for the operation of the PEMFC at 80 °C, 100 °C and 110 °C, with a clear favoring effect of the LDH-sepiolite filler for operation at the highest temperatures.  相似文献   

15.
PTFE/Nafion (PN) and PTFE/Nafion/TEOS (PNS) membranes were fabricated for the application of moderate and high temperature proton exchange membrane fuel cells (PEMFCs), respectively. Membrane electrode assemblies (MEAs) were fabricated by PTFE/Nafion (and PTFE/Nafion/TEOS) membranes with commercially available low and high temperature gas diffusion electrodes (GDEs). The effects of relative humidity, operation temperature, and back pressure on the performance and durability test of the as-prepared MEAs were investigated. Incorporating TEOS into a PNS membrane and adding another layer of carbon onto a GDE would result in low membrane conductivity and low fuel cell performance respectively. However, in this work it is shown that HT-PNS MEAs demonstrate a higher performance than LT-PN MEAs in severe conditions - high temperature (118 °C) and low humidity (25% RH). The TEOS and additional carbon layer function as water retaining agents which are especially important for high temperature and low humidity conditions. The HT-PNS MEA showed good stability in a 50 h fuel cell test at high temperature, moderate relative humidity (50% RH) and back pressure of 14.7 psi.  相似文献   

16.
Processes for separating hydrogen isotopes are important for future energy applications. Several separation methods are based on electrolytic process; however, electrolysis consumes large amounts of electric energy. In this study, we demonstrate deuterium isotope separation from a mixture of H2 and D2 gases using a polymer electrolyte fuel cell stack. To identify the most efficient process, we investigated two flow patterns for the fuel gas, namely, parallel and serial flow. The electrical power of the stacks depended on the flow pattern when a high current was generated. We attribute this dependence on membrane dehydration and water droplet formation in the serial flow, which passed through the single cells in a straight path. However, the stack with the serial path showed a high separation factor (α = 6.6) indicating enrichment of deuterium water during the operation. The long reaction path of the fuel gas contributed to effective separation. The fuel utilization in individual cells suggested the potential for even more effective separation processes by a serial flow path.  相似文献   

17.
The formation of mono-vacancy, vacancy clusters and hydrogen-vacancy complexes with 30 keV H ion-irradiated pure titanium at different doses and temperatures was measured using by Positron annihilation spectroscopy (PAS). Results show a large number of HmVn clusters and vacancy-like defects in the samples irradiated at for room temperature, and that the formation of HmVn (m > n) at the sample irradiated at a high dose inhibits the increase of the S parameter. At increased irradiation temperature, the shrinkage of vacancy clusters and the effective open volume of defects decrease the S parameters. The high-temperature irradiation results in decreased vacancy-type defect concentration, and some hydrogen atoms diffuse from the cascade region to the track region, forming a large number of hydrogen-vacancy complexes in the track region. The coincidence Doppler broadening spectroscopy, an element analysis method, used to detect hydrogen in the ion-irradiated pure titanium sample, and results show hydrogen-related peaks in the high-momentum region, which may be due to the information of positron annihilation in the covalent bond formed by the H and the Ti elements. The increased radiation dose and temperature contribute to the formation of the hydrogen vacancy-complex, and the positron annihilation in high-momentum regions easily obtain hydrogen-related information.  相似文献   

18.
Current fuel cell research is focused on reducing manufacturing costs by reducing platinum catalyst loading without sacrificing performance. Although improvements have been demonstrated by using platinum supported on porous carbon nanoparticles, significant losses in “active” platinum surface area within the catalyst layer (CL) still occur. Optimizing the reactant gas/Nafion®/platinum triple phase boundary (TPB) in the CL (i.e., CL morphology) will result in increased “active” catalyst area and overall fuel cell performance. In this study, the effect of temperature on the formation of Nafion® nanofibers in the CL during fuel cell operation and its subsequent improvement on fuel cell performance was clearly characterized. Post mortem scanning electron micrographs clearly show that Nafion® nanofibers improve the TPB, where Nafion® nanofibers act as a more efficient proton transport route from the catalyst particles to the polymer electrolyte membrane reducing ohmic and mass transport resistance.  相似文献   

19.
It is known that trace amounts of cations have a detrimental effect on the liquid-phase conductivity of perfluorosulfonated membranes at room temperature. However, the conditions used were very different from typical fuel cell conditions. Recent research has shown the impact of conductivity measurement conditions on NH4+ contaminated membranes. In this study, the impact of nonproton-containing cations (Mn+ = Na+, Ca2+, and Fe3+) on Nafion membrane (N-211) conductivity was investigated both in deionized (DI) water at room temperature (∼25 °C) and in the gas phase at 80 °C under conditions similar to in a PEMFC. These conductivities were compared with those of Nafion membranes contaminated with NH4+ ions. Under the same conditions, the conductivity of a metal cationic-contaminated membrane having the same proton composition (yH+m) was similar, but slightly lower than that of an NH4+-contaminated membrane. The conductivity in the purely H+-form of N-211 was more than 12 times greater than the Mn+-form form at 25 °C in DI water. At 80 °C, the gas-phase conductivity was 6 times and 125 times greater at 100%RH and 30%RH, respectively. The quantitative results for conductivity and activation energy of contaminated membranes under typical fuel cell conditions are reported here for the first time.  相似文献   

20.
A computational modeling framework is developed to represent the transport phenomena, electrochemistry and the mechanical stresses in a polymer electrolyte fuel cell (PEFC). The model is able to predict the mechanical stresses developed in the polymer electrolyte due to hydration changes, and restriction of the membrane swelling as a result of these hydration changes in the PEFC assembly. Anisotropy in the mechanical properties of the gas diffusion layers is accounted in the stress calculations. It is seen that hydration variations during the PEFC operation can cause significant mechanical stresses. The effects of operating voltage and relative humidities of reactants are investigated. It is observed that high inlet humidities result in a better performance; however, it can potentially cause the polymer electrolyte membrane to go through plastic deformation irreversibly. Thermal stresses due to temperature variations are also calculated and compared with hygral stresses; and it is found that thermal stresses are not negligible but are typically a fraction of the hygral stresses in a typical PEFC operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号