首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work provides a two-dimensional thermal model for cylinder Ni/MH battery. Thermal model is developed to analyze the thermal behavior of the battery when charged and overcharged. Quantity of heat and heat generation rate of the battery during charge and overcharge period are studied by quartz frequency microcalorimeter. Heat generation curve is fitted into a function, and heat transport equation is solved. Analysis with the model and experiment show that temperature rise is about 3 °C and difference between the model and the experiment is no more than 0.1 °C.  相似文献   

2.
Shiv Kumar  G.N. Tiwari 《Solar Energy》2009,83(9):1656-110
In this paper, an attempt is made to estimate the internal heat transfer coefficients of a deep basin hybrid (PV/T) active solar still. The estimation is based on outdoor experimental observation of hybrid (PV/T) solar still for composite climate of New Delhi (latitude 28°35′N and longitude 77°12′E). The internal heat transfer coefficients are evaluated by using thermal models proposed by various researchers. The comparison of hourly yield predicted using various thermal models to the experimental has also been carried out by evaluating the correlation coefficient and percentage deviation. It is observed that, Kumar and Tiwari model (KTM) better validate the results than the others model. The average annual values of convective heat transfer coefficient for the passive and hybrid (PV/T) active solar still are observed as 0.78 and 2.41 W m−2 K−1, respectively at 0.05 m water depth.  相似文献   

3.
Convective boiling heat transfer coefficients and dryout phenomena of CO2 are investigated in rectangular microchannels whose hydraulic diameters range from 1.08 to 1.54 mm. The tests are conducted by varying the mass flux of CO2 from 200 to 400 kg/m2 s, heat flux from 10 to 20 kW/m2, while maintaining saturation temperature at 0, 5 and 10 °C. Test results show that the average heat transfer coefficient of CO2 is 53% higher than that of R134a. The effects of heat flux on the heat transfer coefficient are much significant than those of mass flux. As the mass flux increases, dryout becomes more pronounced. As the hydraulic diameter decreases from 1.54 to 1.27 mm and from 1.27 to 1.08 mm at a heat flux of 15 kW/m2 and a mass flux of 300 kg/m2 s, the heat transfer coefficients increase by 5% and 31%, respectively. Based on the comparison of the data from the existing models with the present data, the Cooper model and the Gorenflo model yield relatively good predictions of the measured data with mean deviations between predicted and measured data of 21.7% and 21.2%, respectively.  相似文献   

4.
The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. In this paper, a new battery thermal management method using a reciprocating air flow for cylindrical Li-ion (LiMn2O4/C) cells was numerically analyzed using (i) a two-dimensional computational fluid dynamics (CFD) model and (ii) a lumped-capacitance thermal model for battery cells and a flow network model. The battery heat generation was approximated by uniform volumetric joule and reversible (entropic) losses. The results of the CFD model were validated with the experimental results of in-line tube-bank systems which approximates the battery cell arrangement considered for this study. The numerical results showed that the reciprocating flow can reduce the cell temperature difference of the battery system by about 4 °C (72% reduction) and the maximum cell temperature by 1.5 °C for a reciprocation period of τ = 120 s as compared with the uni-directional flow case (τ = ∞). Such temperature improvement attributes to the heat redistribution and disturbance of the boundary layers on the formed on the cells due to the periodic flow reversal.  相似文献   

5.
Molten salts have better thermal properties than synthetic mineral oil, and hence they can be directly used as heat transfer fluids in solar power plants, but in practice their direct applications as heat transfer fluids are constrained due to their high freezing temperature points. In this paper, a class of ternary nitrate salt mixtures consisting of 50-80 wt% KNO3, 0-25 wt% LiNO3 and 10-45 wt% Ca(NO3)2 were processed and tested. Experimental results indicated that some mixtures within this range exhibited excellent thermal properties, such as a low melting point (<100 °C), robust reliability, high-temperature stability (upto 500 °C) and a low viscosity (e.g.,<5 cP at 190 °C). Apart from these desirable thermo-physical properties, the manufacturing cost of these novel inorganic salts HTFs (Heat Transfer Fluids) is considerably lower than those of the existing commercial heat transfer fluids (HTFs).  相似文献   

6.
LiMn1.5Ni0.5O4 has been synthesized by an ultrasonic-assisted sol-gel method. The precursor is heat treated at a series of temperatures from 650 °C to 1000 °C. The structure and physical-chemical properties of the as-prepared powder are investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) thermal gravimetric and galvanostatic charge-discharge tests in detail. As temperature goes up, the particle size increases, the reactivity of the material in 4 V region becomes more obvious, the structure of the samples become more stable and it behaves optimal electrochemical properties as the material is heat treated at 850 °C. When it is used as cathode active material in a lithium battery, it delivers high initial capacity of 134.5 mAh g−1 (corresponding to 91.7% of the theoretical capacity), and high rate discharge capability, e.g., 133.4, 120.6, 111.4, 103.2 and 99.3 mAh g−1 as discharged at 0.5, 1, 5, 10 and 15 C (1 C = 148 mA g−1)-rates, respectively. It also shows satisfactory capacity retention even at high rate of 5 C, which is about 99.83% of the capacity retention per cycle.  相似文献   

7.
In order to better understand the thermal abuse behavior of high capacities and large power lithium-ion batteries for electric vehicle application, a three-dimensional thermal model has been developed for analyzing the temperature distribution under abuse conditions. The model takes into account the effects of heat generation, internal conduction and convection, and external heat dissipation to predict the temperature distribution in a battery. Three-dimensional model also considers the geometrical features to simulate oven test, which are significant in larger cells for electric vehicle application. The model predictions are compared to oven test results for VLP 50/62/100S-Fe (3.2 V/55 Ah) LiFePO4/graphite cells and shown to be in great agreement.  相似文献   

8.
The numerical modeling of the conjugate heat transfer and fluid flow through the micro-tube was presented in the paper. Three different fluids with temperature dependent fluid properties are considered: water and two dielectric fluids, HFE-7600 and FC-70. The diameter ratio of the micro-tube was Di/Do = 0.1/03 mm with a tube length L = 70 mm, geometry used in [D. Lelea, Nishio S., Takano K., The experimental research on microtube heat transfer and fluid flow of distilled water, International Journal of Heat and Mass Transfer 47 (2004) 2817–2830]. The laminar fluid flow regime is analyzed. Two different heat transfer conditions are considered: heating and cooling. The influence of the temperature dependent thermal conductivity on Nu number is analyzed for these two cases and compared with k = const.  相似文献   

9.
Current collectors are typically electrochemically inactive in lithium ion batteries. However, they might affect the whole cell performance once they are thermally treated during battery assembly procedure. The goal of this study is to investigate the heat treatment effect of Ni foam current collectors on the electrochemical performance in lithium ion batteries. Ni foams were thermally treated at different temperatures in air, and they were characterized in terms of morphology, structure and electrochemical performance in a half cell. SEM images showed that Ni foam surface became coarse with an increase of the heating temperature. Thermally treated Ni foams below 200 °C had negligible capacity of about 0.025 mAh, but above 300 °C showed certain capacity up to 3.13 mAh at 30th cycles due to the oxide layer formed by the thermal oxidation of the Ni foam. The results demonstrate that the thermal treatment of Ni foam current collector promotes the gradual oxidation on the Ni foam surface with nonnegligible capacity contribution.  相似文献   

10.
Computational fluid dynamics (CFD) tool has been used for investigation of convective heat transfer of CO2 in two porous tubes. Effects of some important parameters such as pressure, inlet temperature, mass flow rate, wall heat flux and porosity on temperature distribution and local heat transfer coefficients have been studied numerically. Near the supercritical conditions, these parameters are very effective on temperature gradient and local heat transfer coefficients. For example at p = 9.5 MPa, under the same conditions, the heat transfer coefficient in a tube with particle diameters of 0.1–0.12 mm is about 20–30% higher than when the particle diameter of 0.2–0.28 mm were used. The heat transfer coefficient increases with decreasing pressure and increasing mass flow rate. Also the porosity of the bed has the important role on the heat transfer. The CFD predictions have been compared to the experimental data and showed pretty good agreement.  相似文献   

11.
This article presents an electro‐thermal model of a stack of three lithium ion batteries for automotive applications. This tool can help to predict thermal behaviour of battery cells inside a stack. The open source software OpenFOAM provides the possibility to add heat generation because of Joule losses in a CFD model. Heat sources are introduced at the connectors and are calculated as a function of battery discharge current and internal resistance. The internal resistance is described in function of temperature. Simulation results are validated against experimental results with regard to cooling air flow field characteristic and thermal behaviour of the cell surface. The validation shows that the simulation is capable to anticipate air flow field characteristics inside the battery box. It also predicts correctly the thermal behaviour of the battery cells for various discharge rates and different cooling system conditions. The simulation supports the observation that batteries have a higher temperature close to the connectors and that the temperature increase depends highly on discharge rate and cooling system conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Working fluids for high-temperature organic Rankine cycles   总被引:1,自引:0,他引:1  
Alkanes, aromates and linear siloxanes are considered as working fluids for high-temperature organic Rankine cycles (ORCs). Case studies are performed using the molecular based equations of state BACKONE and PC-SAFT. First, “isolated” ORC processes with maximum temperatures of 250 °C and 300 °C are studied at sub- or supercritical maximum pressures. With internal heat recovery, the thermal efficiencies ηth averaged over all substances amount to about 70% of the Carnot efficiency and increase with the critical temperature. Second, we include a pinch analysis for the heat transfer from the heat carrier to the ORC working fluid by an external heat exchanger (EHE). The question is for the least heat capacity flow rates of the heat carrier required for 1 MW net power output. For the heat carrier inlet temperatures of 280 °C and 350 °C are considered. Rankings based on the thermal efficiency of the ORC and on the heat capacity flow rates of the heat carrier as well as on the volume and the heat flow rates show cyclopentane to be the best working fluid for all cases studied.  相似文献   

13.
An experimental study has been performed to investigate the heat and mass transfer performance in a falling film absorber of a small-sized absorption chiller/heater. The components of the chiller/heater were concentrically arranged in a cylindrical form with a low temperature generator, an absorber and an evaporator from the center. The arrangement of such a helical-type heat exchanger makes the system more compact compared to a conventional one. As a working fluid, LiBr + LiI + LiNO3 + LiCl solution is used to get improved heat transfer effect. The heat and mass transfer coefficients of the helical absorber provide similar values compared with the data obtained for horizontal absorbers at similar solution flow rates. The heat and mass transfer coefficients of LiBr + LiI + LiNO3 + LiCl solution increase as the solution flow rate per unit length increases. However, if the solution flow rate is larger than 0.03 kg/m s, the heat and mass transfer increase is minimal. Thus, 0.03 kg/m s is recommended as an optimal solution flow rate. The heat and mass flux performance of LiBr + LiI + LiNO3 + LiCl solution shows the tendency of 2-5% increase compared with that of LiBr solution.  相似文献   

14.
A rechargeable lithium-ion battery module for underwater use   总被引:1,自引:0,他引:1  
Portable underwater electrical power is needed for many commercial, recreational and military applications. A battery system is currently not available to meet these needs, which was the aim of this project. Lithium-ion battery cells (Panasonic (CGR18650E)) were chosen, based on their high energy density and availability. To increase their voltage, 8 battery cells were connected in series (“sticks”) and protected by encapsulating them into a polycarbonate tube; and 6 sticks were housed inside a triangular aluminum case (module). Testing was performed to determine the consistency of individual cells, sticks and module and during discharge/charging cycles. The effect of ambient temperature (TA) was determined by instrumenting them with thermocouples. In addition, voltage and current were measured and used to determine the heat generated within the battery cell and were compared to theory. From these data, a radial temperature profile was determined for two battery sticks in the battery module. Collapse pressure was determined and compared to theory. The Panasonic (CGR18650E) cells delivered 2291 mAh each over a wide range of TA and discharge/charge rates. The theoretical and experimental data showed that the temperature within the battery sticks and modules did not rise above or below their operating temperature range (−20 and 60 °C), in agreement with the models. The tubes encapsulating the sticks withstood pressures down to 305 m of sea water (msw) which was predicted by modeling. The Panasonic (CGR18650E) cells, sticks and module demonstrated that they provided sufficient electrical power, reliably and safely to be used in the underwater environment (1800-2000 kPa, 305 msw) over a wide range TA, including high power requirement systems like an active thermal protection system that keeps a diver comfortable in extreme temperature conditions. The concept developed here can be modified to meet specific power requirements by varying the number of cell in series to achieve the desired voltage, and the number of sticks in parallel to provide the current capacity required.  相似文献   

15.
In this paper a study of the thermal performance of a commercial alkaline water electrolyzer (HySTAT from Hydrogenics) designed for a rated hydrogen production of 1 N m3 H2/h at an overall power consumption of 4.90 kW h/N m3 H2 is presented. The thermal behaviour of the electrolyzer has been analyzed under different operating conditions with an IR camera and several thermocouples placed on the external surface of the main electrolyzer components. It has been found that the power dissipated as heat can be reduced by 50–67% replacing the commercial electric power supply unit provided together with the electrolyzer by an electronic converter capable of supplying the electrolyzer with a truly constant DC current. A lumped capacitance method has been adopted to mathematically describe the thermal performance of the electrolyzer, resulting in a thermal capacitance of 174 kJ °C−1. The effect of the AC/DC converter characteristics on the power dissipated as heat has been considered. Heat losses to the ambient were governed by natural convection and have been modeled through an overall heat transfer coefficient that has been found to be 4.3 W m−2 °C−1. The model has been implemented using ANSYS® V10.0 software code, reasonably describing the performance of the electrolyzer. A significant portion of the energy dissipated as heat allows the electrolyzer operating at temperatures suitable to reduce the cell overvoltages.  相似文献   

16.
This work presents measurements of the friction and heat transfer coefficients in 2D minichannels of 1.12 mm to 300 μm in thickness. The friction factor is estimated from the measured pressure drop along the whole channel. The heat transfer coefficient is determined from a local and direct measurement of both temperature and heat flux at the wall using a specific transducer. The experimental results are in good agreement with classical correlations relative to channels of conventional size. The observed deviations are explained either by macroscopic effects (mainly entry and viscous dissipation effects) or by imperfections of the experimental apparatus.  相似文献   

17.
The problem of the free convection from a vertical heated plate in a porous medium is investigated numerically in the present paper. The effect of the sinusoidal plate temperature oscillation on the free convection from the plate is studied using the non-equilibrium model, i.e., porous solid matrix and saturated fluid are not necessary to be at same temperature locally. Non-dimensionalization of the two-dimensional transient laminar boundary layer equations results in three parameters: (1) H, heat transfer coefficient parameter, (2) Kr, thermal conductivity ratio parameter, and (3) λ, thermal diffusivity ratio. Two additional parameters arise from the plate temperature oscillation condition which are the non-dimensional amplitude (ε) and frequency (Ω). The fully implicit finite difference method is used to solve the system of equations. The numerical results are presented for 0 ? H ? 10, 0 ? Kr ? 10, 0.001 ? λ ? 10 with the plate temperature oscillation parameters 0 ? Ω ? 10 and 0 ? ε ? 0.5. The results show that the thermal conductivity ratio parameter is the most important parameter. It is found also that increasing the amplitude and the frequency of the oscillating surface temperature will decrease the free convection heat transfer from the plate for any values of the other parameters.  相似文献   

18.
In-mold decoration (IMD) during injection molding is a relatively new injection molding technique and has been employed for plastic products to improve surface quality and achieving colorful surface design, etc. During IMD processing, the film is preformed as the shape of mold cavity and attached to one side of the mold wall (usually cavity surface), then molten polymer is filled into the cavity. Heat transfer toward the mold cavity side during molding IMD part is significantly retarded because the film is much less thermal conductive than metal mold. To investigate the effect of film on temperature field, polycarbonate (PC) was injection molded under various conditions including coolant temperature, melt temperature, film material and film thickness. Simulations were also conducted to evaluate the melt–film interface temperature and its influence from film initial temperature and film thermal properties. For PC film, it was found that the heat transfer retardation results in the mold temperature drop in cavity surface and the maximum temperature drop as compared to that of conventional injection molding without film may be as high as 17.7 °C. For PET film, this maximum mold temperature drop is about 13 °C. As PC film thickness increases, the retardation-induced mold temperature difference also increases. The initial film temperature (30 °C and 95 °C) may affect the melt–film interface temperature at the contact instant of melt and film by about 12 °C to 17 °C. When thermal conductivity of film increases from 0.1 W/(m–k) to 0.2 W/(m–k), melt–film interface temperature may vary by 22.9 °C. The simulated mold temperature field showed reasonable agreement with experimental results.  相似文献   

19.
Accurate characterization of the heat generation behavior of a battery is crucial to a good design of its thermal management system. Concerning the thermal properties, much attention has been paid to small-sized batteries such as the 18650- or button-type and little information is available for large-capacity Li-ion prismatic cells under adiabatic conditions. In this work, heat generation of a commercial 40 Ah prismatic LiFePO4/C battery is evaluated using an accelerating rate calorimeter under an adiabatic condition. The battery cell is charged or discharged at an initial temperature from ?12.5 to 40 °C and a current rate from 0.2C to 2C. The experiment results show that heat generated in the battery is highly dependent on its operating temperature, state of charge and current rate. Internal resistance and entropy coefficient of the battery cell are also determined by the Hybrid Pulse Power Characterization method and potentiometric method, respectively. Relationship between the internal resistance and the heat generation behavior is highlighted. Entropy coefficient and volumetric heat generation rate of the battery cell obtained in this work are compared with those of other Li-ion batteries reported in literature.  相似文献   

20.
Polyethylene (PE)-supported poly(methyl methacrylate-vinyl acetate)-co-poly(ethylene glycol) diacrylate with and without doping nano-Al2O3, namely P(MMA-VAc)-co-PEGDA/PE and P(MMA-VAc)-co-PEGDA/Al2O3/PE, are prepared and their performances as gel polymer electrolytes (GPEs) for lithium ion battery are studied by mechanical test, scanning electron microscopy, thermogravimetric analyzer, electrochemical impedance spectroscopy, cyclic voltammetry, and charge/discharge test. It is found that the doping of nano-Al2O3 in the P(MMA-VAc)-co-PEGDA/PE improves the comprehensive performances of the GPE and thus the rate performance and cyclic stability of the battery. With doping nano-Al2O3, the mechanical and thermal stability of the polymer and the ionic conductivity of the corresponding GPE increases slightly, while the battery exhibits better cyclic stability. The mechanical strength and the decomposition temperature of the polymer increase from 15.9 MPa to 16.2 MPa and from 410 °C to 420 °C, respectively. The ionic conductivity of the GPE is from 3.4 × 10−3 S cm−1 to 3.8 × 10−3 S cm−1. The discharge capacity of the battery using the GPE with doping nano-Al2O3 keeps 90.9% of its initial capacity after 100 cycles and shows good C-rate performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号