首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of organic–inorganic membranes were prepared through sol–gel reaction of quaternized poly(vinyl alcohol) (QAPVA) with different contents of tetraethoxysilanes (TEOS) for alkaline direct methanol fuel cells. These hybrid membranes are characterized by FTIR, X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDXA) and thermo gravimetric analysis (TGA). The ion exchange content (IEC), water content, methanol permeability and conductivity of the hybrid membranes were measured to evaluate their applicability in fuel cells. It was found that the addition of silica enhanced the thermal stability and reduced the methanol permeability of the hybrid membranes. The hybrid membrane M-5, for which the silica content was 5 wt%, showed the lowest methanol permeability and the highest ion conductivity among the three hybrid membranes. The ratio of conductivity to methanol permeability of the membrane M-5 indicated that it had a high potential for alkaline direct methanol fuel cell applications.  相似文献   

2.
The emergence of fuel cell technology has created a new tool for the generation of clean, high efficiency alternative energy for humans. The research and development of new catalysts to replace the expensive and rare platinum (Pt) to reduce the overall cost of fuel cells is ongoing in this area. Nitrogen-doped carbon and its composites possess great potential for fuel cell catalyst applications especially at the oxygen reduction cathode. It is proposed that the reaction mechanisms of nitrogen-doped carbon catalysts for oxygen reduction involve adsorption of oxygen at the partially polarised carbon atoms adjacent to the nitrogen dopants, different from the mechanism at platinum catalysts, which utilise d-bands filling at oxygen adsorption sites. Nitrogen doping in both carbon nanostructures and its composites with active metals or ceramics are reviewed. Nitrogen-doped carbon without composite metals, displays high catalytic activity in alkaline fuel cells and exhibits significant activity in proton exchange membrane fuel cells and direct methanol fuel cells. Pt-based catalysts with nitrogen-doped carbon supports show enhanced catalytic activity towards oxygen reduction, attributed to the enhanced anchoring of Pt to the support that results in better dispersion and stability of the electrodes. For nitrogen-doped carbon composites with non-noble metals (Fe, Co, etc), enhanced activity is seen in both proton exchange and alkaline fuel cells. There are many ongoing debates about the nature of nitrogen-carbon bond in catalysis. Pyrrole- and pyridinic-type nitrogen generally considered to be responsible for the catalytic sites in acidic and alkaline media, respectively. In recent years, significant efforts have been made towards increasing the stability of nitrogen-doped carbon catalysts in acidic media through the formation of composites with ceramic or metal oxide materials. This article reviews the progress in the area of this new class of catalysts and their composites for greater enhancement of oxygen reduction activity and stability in various fuel cell applications.  相似文献   

3.
This review describes the polymer electrolyte membranes (PEM) that are both under development and commercialized for direct methanol fuel cells (DMFC). Unlike the membranes for hydrogen fuelled PEM fuel cells, among which perfluorosulfonic acid based membranes show complete domination, the membranes for DMFC have numerous variations, each has its advantages and disadvantages. No single membrane is emerging as absolutely superior to others. This review outlines the prospects of the currently known membranes for DMFC. The membranes are evaluated according to various properties, including: methanol crossover, proton conductivity, durability, thermal stability and maximum power density. Hydrocarbon and composite fluorinated membranes currently show the most potential for low cost membranes with low methanol permeability and high durability. Some of these membranes are already beginning to impact the portable fuel cell market.  相似文献   

4.
Besides hydrogen peroxide is known as conventionally oxidizer, it is both a fuel and a source of ignition. Platinum is not suitable catalyst for oxidation and reduction of hydrogen peroxide, because it directly converts the hydrogen peroxide to oxygen gas. In this study, the oxidation mechanism of peroxide is investigated and a fuel cell operating with acidic peroxide as oxidant and basic peroxide as fuel is constructed. The peroxide oxidation reaction in novel alkaline direct peroxide/peroxide fuel cell (DPPFC), shown feasible here using less expensive carbon supported Nickel catalyst, makes the alkaline direct peroxide/peroxide fuel cell a potentially low cost technology compared to PEM fuel cell technology, which employs platinum catalysts. The power density of 3.75 mW cm−2 at a cell voltage of 0.55 V and a current density of 14 mA cm−2 was achieved in our fuel cell.  相似文献   

5.
This paper reports on the development and performance test of an alkaline direct ethylene glycol fuel cell. The fuel cell consists of an anion-exchange membrane with non-platinum electrocatalysts at both the anode and cathode. It is demonstrated that this type of fuel cell with relatively cheap membranes and catalysts can result in a maximum power density of 67 mW cm−2 at 60 °C, which represents the highest performance that has so far been reported in the open literature. The high performance is mainly attributed to the increased kinetics of both the ethylene glycol oxidation reaction and oxygen reduction reaction rendered by the alkaline medium with the anion-exchange membrane.  相似文献   

6.
Ultrasonic synthesis was investigated as a synthesis method of non-platinum catalysts for alkaline direct methanol fuel cells (alkaline DMFCs) such as 20% mass Pd/C, Au/C, and PdAu/C. Among four kinds of solvents, ethylene glycol was demonstrated to be the optimum solvent for the synthesis of those catalysts. When ethylene glycol was used, the synthesized metal nanoparticles were highly dispersed on carbon particles. The synthesized Pd/C and PdAu/C showed the high oxygen reduction reaction (ORR) activity in alkaline condition (0.5 M NaOH aqueous solution), which was comparable to conventional Pt/C. Moreover, they showed lower methanol oxidation reaction (MOR) activity. Membrane electrode assemblies (MEAs) containing the synthesized Pd/C cathode catalysts and alkaline ion exchange membranes were fabricated and evaluated by single cell tests. They showed high performance that was comparable to MEAs with Pt/C cathode. In addition, it was found that the synthesized Pd/C was relatively tolerant to methanol crossover.  相似文献   

7.
In1986 the Dutch national fuel cell program started. Fuel cells were developed under the paradigm of replacing conventional technology. Coal-fired power plants were to be replaced by large-scale MCFC power plants fuelled by hydrogen in a full-scale future hydrogen economy. With today's knowledge we will reflect on these and other ideas with respect to high temperature fuel cell development including the choice for the type of high temperature fuel cell. It is explained that based on thermodynamics proton conducting fuel cells would have been a better choice and the direct carbon fuel cell even more so, with electrochemical gasification of carbon as the ultimate step. The specific characteristics of fuel cells and multisource multiproduct systems were not considered, whereas we understand now that these can provide huge driving forces for the implementation of fuel cells compared to just replacing conventional combined heat and power production technology.  相似文献   

8.
By comparing the performance of fuel cells operating on some low molecular weight alcohols, it resulted that ethanol may replace methanol in a direct alcohol fuel cell. To improve the performance of a direct ethanol fuel cell (DEFC), it is of great importance to develop anode catalysts for ethanol electro-oxidation more active than platinum alone. This paper presents an overview of catalysts tested as anode and cathode materials for DEFCs, with particular attention on the relationship between the chemical and physical characteristics of the catalysts (catalyst composition, degree of alloying, and presence of oxides) and their activity for the ethanol oxidation reaction.  相似文献   

9.
There are several problems which are holding back the use of fuel cells. The utilization of fuel cells depends on the start-up costs which are very high due to the use of expensive materials for their construction. In that respect, we describe a cost-effective alkaline fuel cell (AFC) that uses solid, polymer based, membrane instead of conventionaly used, highly concentrated, corrosive, liquid alkaline electrolyte. This approach to AFC is potentially the basis of a simple, low-cost system, that can solve one of the problems of the highly-efficient and environment-friendly AFC.The focus of this paper are low cost composite alkaline membranes, based on poly(vinyl alcohol) (PVA). The PVA matrix is made by solution cast method and gamma irradiation crosslinking. Three different types of membranes are obtained in this manner - plain PVA membrane, PVA membrane cross-linked using gamma irradiation (γ-PVA) and composite PVA membrane doped with Mo (PVA-Mo). These membranes are immersed in the alkaline solution and investigated as anion exchange membranes. The performance of the solid alkaline fuel cells (SAFCs) containing these PVA membranes has been studied under hydrogen and oxygen gas flow on the Pt/C catalyst. Both, γ-PVA and PVA-Mo membranes are modified to absorb larger amounts of alkaline solution than the PVA membrane, thus greatly improving the performance of the SAFC, in terms of output power. This is clearly indicated in the polarisation curves. The electrochemical impedance spectroscopy measurements during the SAFC operation were also performed to give better insight in the effect observed. Investigation presented in this paper clearly indicates that solid alkaline PVA membranes can be used for the construction of the SAFCs.  相似文献   

10.
This paper evaluates nine types of electrical energy generation options with regard to seven criteria. The options use natural gas or hydrogen as a fuel. The Analytic Hierarchy Process was used to perform the evaluation, which allows decision-making when single or multiple criteria are considered.The options that were evaluated are the hydrogen combustion turbine, the hydrogen internal combustion engine, the hydrogen fuelled phosphoric acid fuel cell, the hydrogen fuelled solid oxide fuel cell, the natural gas fuelled phosphoric acid fuel cell, the natural gas fuelled solid oxide fuel cell, the natural gas turbine, the natural gas combined cycle and the natural gas internal combustion engine.The criteria used for the evaluation are CO2 emissions, NOX emissions, efficiency, capital cost, operation and maintenance costs, service life and produced electricity cost.A total of 19 scenarios were studied. In 15 of these scenarios, the hydrogen turbine ranked first and proved to be the most preferred electricity production technology. However since the hydrogen combustion turbine is still under research, the most preferred power generation technology which is available nowadays proved to be the natural gas combined cycle which ranked first in five scenarios and second in eight. The last in ranking electricity production technology proved to be the natural gas fuelled phosphoric acid fuel cell, which ranked in the last position in 13 scenarios.  相似文献   

11.
Silica is the most common inorganic filler used in fuel cells, especially for proton exchange membrane fuel cell and direct alcohol fuel cell applications. Silica has played an important role in improving the performance of fuel cells by enhancing their membrane properties. Recently, silica has been widely implemented in different types of membranes, such as fluorinated membranes (Nafion), sulfonated membranes (SPEEK, SPS, SPAES, SPI) and other organic polymer matrixes. The incorporation of silica into membrane matrices has improved the thermal stability, mechanical strength, water retention capacity and proton conductivity of the membrane. This review describes the interactions between silica and different types of polymer matrices in fuel cells and how they boost fuel cell performance. In addition, this review also discusses the current challenges of silica-related membrane-based fuel cells and predicts the future prospects of silica in membrane-based fuel cell applications.  相似文献   

12.
13.
A direct carbon solid oxide fuel cell is a new technology for clean and efficient utilization of carbon resources to generate electricity, with the advantages of high power generation efficiency and wide available fuel flexibility. Biomass, in virtue of large specific surface area, numerous oxygen-containing functional groups which can promote the electrooxidation of carbon, and low ash content which can increase the cell stability, reveals promising feasibility as a fuel for direct carbon fuel cells. Here we report a high-performance direct carbon fuel cell utilizing Chinese parasol leaf biochar as fuel, among which Ag–Gd0.1Ce0.9O2-δ and Al2O3 doped yttria-stabilized zirconia are employed as symmetrical electrodes and electrolyte materials, respectively. The cell with pure leaf biochar fuel gives a maximum power density of 249 mW cm?2 and an open circuit voltage (OCV) of 1.008 V at 850 °C while an improved performance of 272 mW cm?2 and OCV of 1.01 V are achieved for the cell fuelled by Fe catalyst-loaded leaf biochar. The above results demonstrate that Chinese parasol leaf biochar can be applied as a potential fuel for high performance direct carbon solid oxide fuel cells.  相似文献   

14.
Hydrogen crossover that is the unwanted hydrogen permeation across the membrane driven by the difference of gas concentrations causes a critical concern of safety and efficiency for electrochemical cells, such as fuel cells and electrolyzer cells. Although the hydrogen crossover measurement in fuel cells that employ platinum based catalysts is simple and widely used in laboratory settings, it is questionable to apply existing limiting current method to water electrolyzer cells and alkaline exchange membrane (AEM) systems, which is due to the typical catalyst materials used and membrane properties, respectively. In this work, we demonstrate the operation of a compact and low-cost method of measuring hydrogen crossover that works for both AEM and proton exchange membrane (PEM) systems. The method entails a tandem configuration that utilizes an upstream crossover cell with a downstream cell in hydrogen pump configuration to measure the crossover in the cell of interest. We have successfully measured the hydrogen crossover with different membranes at various differential pressures. The developed method can be applied to catalyst-free membranes (both PEM and AEM) as well as PGM free catalyst containing cells. It will be a promising technique for measuring hydrogen crossover in-situ for a real operating membraned-based electrochemical cell or stack.  相似文献   

15.
Within the last years there has been increasing interest in direct liquid fuel cells as power sources for portable devices and, in the future, power plants for electric vehicles and other transport media as ships will join those applications. Methanol is considerably more convenient and easy to use than gaseous hydrogen and a considerable work is devoted to the development of direct methanol fuel cells. But ethanol has much lower toxicity and from an ecological viewpoint ethanol is exceptional among all other types of fuel as is the only chemical fuel in renewable supply. The aim of this study is to investigate the possibility of using direct alcohol fuel cells fed with alcohol mixtures. For this purpose, a comparative exergy analysis of a direct alcohol fuel cell fed with alcohol mixtures against the same fuel cell fed with single alcohols is performed. The exergetic efficiency and the exergy loss and destruction are calculated and compared in each case. When alcohol mixtures are fed to the fuel cell, the contribution of each fuel to the fuel cell performance is weighted attending to their relative proportion in the aqueous solution. The optimum alcohol composition for methanol/ethanol mixtures has been determined.  相似文献   

16.
Ethanol is seen as an attractive option as a fuel for direct ethanol fuel cells and as a source for on-demand production of hydrogen in portable applications. While the effect of ethanol on in-situ electrode behavior has been studied previously, these efforts have mostly been limited to qualitative analysis. In alkaline fuel cells, several cathode catalysts, including Pt, Cu triazole, and Ag can be used. Here, we apply a methodology using a microfluidic fuel cell to analyze in-situ the performance of these cathodes as well as Pt anodes in the presence of ethanol and acetic acid, a common side product from ethanol oxidation. For a given concentration of ethanol (or acetic acid), the best cathode catalyst can be determined and the kinetic losses due to the presence of ethanol (or acetic acid) can be quantified. These experiments also yield information about power density losses from the presence of contaminants such as ethanol or acetic acid in an alkaline fuel cell. The methodology demonstrated in these experiments will enable in-situ screening of new cathodes with respect to contaminant tolerance and determining optimal operational conditions for alkaline ethanol fuel cells.  相似文献   

17.
This paper reports an experimental study on the modification of nafion membrane with neodymium triflate, Nd(SO3CF3)3, a rare earth triflate. The triflate ion resembles nafion in structure and has high lewis acidity, high coordination number, hygroscopic nature and thermal stability. These properties make the neodymium triflate (NdTfO) suitable to improve the performance of NdTfO/nafion membranes in direct alcohol fuel cell by reducing fuel permeability without compromising other properties. The NdTfO/nafion membranes reduced alcohol permeability by nearly 48%. The proton conductivity of 1% NdTfO/nafion was increased by at least 24% as compared to pure cast nafion membrane. The mechanical strength of 1% NdTfO/nafion was higher than that of pure cast nafion. The composite membrane was thermally and chemically stable and has potential for use in direct alcohol fuel cells. A DMFC was developed and its performance was evaluated using the composite membrane, which showed encouraging results.  相似文献   

18.
A study of a direct methanol fuel cell (DMFC) operating with hydroxide ion conducting membranes is reported. Evaluation of the fuel cell was performed using membrane electrode assemblies incorporating carbon-supported platinum/ruthenium anode and platinum cathode catalysts and ADP alkaline membranes. Catalyst loadings used were 1 mg cm−2 Pt for both anode and cathode. The effect of temperature, oxidant (air or oxygen) and methanol concentration on cell performance is reported. The cell achieved a power density of 16 mW cm−2, at 60 °C using oxygen. The performance under near ambient conditions with air gave a peak power density of approximately 6 mW cm−2.  相似文献   

19.
Tungsten carbides (WC) nanoparticles on platelet type-carbon nanofibers (p-CNFs) catalysts have been synthesized for alkaline direct ethanol fuel cells (ADEFC). Physical properties of WC/CNFs samples with various WC contents are analyzed by transmission electron microscope (TEM), thermal gravimetric analysis (TGA) and nitrogen isotherm (BET). The WC/CNFs catalysts showed an improved kinetics for the ethanol oxidation than p-CNFs did. It indicates that the significant increase in the catalytic activity for ethanol oxidation on WC/CNFs than p-CNFs did due to the synergistic structural effect between WC nanoparticles and the p-CNFs supports. WC/CNFs also showed good performances in ADEFC single cells. The maximum current density of P4W3 and P4W4 was 9.0 and 4.4 mA cm−2, respectively. These catalysts can be used as the ethanol oxidation in direct ethanol fuel cells in alkaline media.  相似文献   

20.
Alkaline fuel cells, until recently the only type of fuel cell reliable enough to be used in space, are being neglected for road traction in favour of the supposed advantages of proton exchange membrane (PEM) cells. In practice, the alkaline cell is very well developed, simple to operate with a built-in cooling system, has excellent reliability, and is inexpensive to manufacture, even in small quantities. The paper describes the development (the adoption of modern catalysts, system packaging) and operation of alkaline fuel cells when installed as on-board chargers within a range of rapidly re-fuelled but zero-emission electric vehicles with immediate potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号