首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A new type of sulfonated clay (clay-SO3H) was prepared by the ion exchange method with the sulfanilic acid as the surfactant agent. The grafted amount of sulfanilic acid in clay-SO3H was 51.8 mequiv. (100 g)−1, which was measured by thermogravimetric analysis (TGA). Sulfonated poly(ether ether ketone) (SPEEK)/clay-SO3H hybrid membranes which composed of SPEEK and different weight contents of clay-SO3H, were prepared by a solution casting and evaporation method. For comparison, the SPEEK/clay hybrid membranes were produced with the same method. The performances of hybrid membranes for direct methanol fuel cells (DMFCs) in terms of mechanical and thermal properties, water uptake, water retention, methanol permeability and proton conductivity were investigated. The mechanical and thermal properties of the SPEEK membranes had been improved by introduction of clay and clay-SO3H, obviously. The water desorption coefficients of the SPEEK and hybrid membranes were studied at 80 °C. The results showed that the addition of the inorganic part into SPEEK membrane enhanced the water retention of the membrane. Both methanol permeability and proton conductivity of the hybrid membranes decreased in comparison to the pristine SPEEK membrane. However, it was worth noting that higher selectivity defined as ratio of proton conductivity to methanol permeability of the SPEEK/clay-SO3H-1 hybrid membrane with 1 wt.% clay-SO3H was obtained than that of the pristine SPEEK membrane. These results showed that the SPEEK/clay-SO3H hybrid membrane with 1 wt.% clay-SO3H had potential usage of a proton exchange membrane (PEM) for DMFCs.  相似文献   

2.
A diamine-terminated polybenzimidazole oligomer (o-PBI) has been synthesized for introducing the benzimidazole groups (BI) into sulfonated poly(ether ether ketone) (SPEEK) membranes. SPEEK/o-PBI/4,4′-diglycidyl(3,3′,5,5′-tetramethylbiphenyl) epoxy resin (TMBP) composite membranes in situ polymerization has been prepared for the purpose of improving the performance of SPEEK with high ion-exchange capacities (IEC) for the usage in the direct methanol fuel cells (DMFCs). The composite membranes with three-dimensional network structure are obtained through a cross-linking reaction between PBI oligomer and TMBP and the acid-base interaction between sulfonic acid groups and benzimidazole groups. Resulting membranes show a significantly increasing of all of the properties, such as high proton conductivity (0.14 S cm−1 at 80 °C), low methanol permeability (2.38 × 10−8 cm2 s−1), low water uptake (25.66% at 80 °C) and swelling ratio (4.11% at 80 °C), strong thermal and oxidative stability, and mechanical properties. Higher selectivity has been found for the composite membranes in comparison with SPEEK. Therefore, the SPEEK/o-PBI/TMBP composite membranes show a good potential in DMFCs usages.  相似文献   

3.
A series of covalently crosslinkable organic-inorganic hybrid membranes have been prepared from sulfonated poly(arylene ether sulfone) (SPAES) with pendant propenyl moiety and various amounts of vinyl substituted silica via sol-gel process which are then thermally crosslinked in the presence of benzoyl peroxide (BPO) initiator. The obtained membranes are characterized in terms of oxidative stability, thermal property, ion exchange capacity (IEC), water uptake, swelling ratio in methanol aqueous solution, proton conductivity, and methanol permeability coefficient. The results indicate that the oxidative stability and thermal stability of the hybrid membranes are improved. Moreover, introduction of silica reduces the water uptake and methanol swelling of membranes. The swelling ratio of membranes in 2 mol L−1 methanol aqueous solution at 80 °C slowly decreases from 26 to 19% with the increase of SiO2 content from 0 to 12 wt.%. Furthermore, with the increase in silica content, the methanol permeability coefficient of the hybrid membranes decreases at first and then increases. When the silica content reaches 8 wt.%, the methanol permeability coefficient is at the minimum of 6.02 × 10−7 cm2 s−1, a 2.64-fold decrease compared with that of the pristine SPAES membrane. Moreover, the proton conductivity is found to be at about 95% of that of pristine polymer at that silica content.  相似文献   

4.
Sulfonated titania submicrospheres (TiO2-SO3H) prepared through a facile chelation method are incorporated into sulfonated poly(ether ether ketone) (SPEEK) to fabricate organic-inorganic hybrid membranes with enhanced proton conductivity and reduced methanol permeability for potential use in direct methanol fuel cells (DMFCs). The pristine titania submicrospheres (TiO2) with a uniform particle size are synthesized through a modified sol-gel method and sulfonated using 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt as the sulfonation reagent. The sulfonation process is confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectra (XPS). The hybrid membranes are systematically characterized in terms of thermal property, mechanical property, ionic exchange capacity (IEC), swelling behavior, and microstructural features. The methanol barrier property and the proton conductivity of the SPEEK/TiO2-SO3H hybrid membranes are evaluated. The presence of the fillers reduces methanol crossover through the membrane. Compared with the unsulfonated TiO2-doped membranes, the TiO2-SO3H-doped ones exhibit higher proton conductivity due to the additional sulfonic acid groups on the surface of TiO2. The hybrid membrane doped with 15 wt.% TiO2-SO3H submicrospheres exhibits an acceptable proton conductivity of 0.053 S cm−1 and a reduced methanol permeability of 4.19 × 10−7 cm2 s−1.  相似文献   

5.
Sulfonated poly(ether ether ketone)s (SPEEKs) were further substituted on the polymer main chain by nitration. All sulfonation and nitration were achieved with an inexpensive and simple post substitute reaction. The nitrated SPEEKs have a high glass transition temperature and thermal decomposition temperature, and a lower water uptake than SPEEK, which provides sufficient mechanical strength without swelling in the direct methanol fuel cell (DMFC) application. The methanol permeability of nitrated SPEEKS is reduced to 1.76 × 10−7 cm2 s−1 for S53N22 and 1.86 × 10−7 cm2 s−1 for S63N17 with no loss of conductivity in the DMFC application, and a proton conductivity that reached 0.026 S cm−1. The nitrated SPEEK membranes satisfy the requirements of proton-exchange membranes for the DMFC.  相似文献   

6.
Sulfonated poly(ether ether ketone) has been investigated as an ionomer in the catalyst layer for direct methanol fuel cells (DMFC). The performance in DMFC, electrochemical active area (by cyclic voltammetry), and limiting capacitance (by impedance spectroscopy) have been evaluated as a function of the ion exchange capacity (IEC) and content (wt.%) of the SPEEK ionomer in the catalyst layer. The optimum IEC value and SPEEK ionomer content in the electrodes are found to be, respectively, 1.33 meq. g−1 and 20 wt.%. The membrane-electrode assemblies (MEA) fabricated with SPEEK membrane and SPEEK ionomer in the electrodes are found to exhibit superior performance in DMFC compared to that fabricated with Nafion ionomer due to lower interfacial resistance in the MEA as well as larger electrochemical active area. The MEAs with SPEEK membrane and SPEEK ionomer also exhibit better performance than that with Nafion 115 membrane and Nafion ionomer due to lower methanol crossover and better electrode kinetics.  相似文献   

7.
A series of cross-linked membranes based on SPEEK/Nafion have been prepared to improve methanol resistance and dimension stability of SPEEK membrane for the usage in the direct methanol fuel cells (DMFCs). Sulfonated diamine monomer is synthesized and used as cross-linker to improve the dispersion of Nafion in the composite membranes and decrease the negative effect of cross-linking on proton conductivity of membranes. FT-IR analysis shows that the cross-linking reaction is performed successfully. The effects of different contents of Nafion on the properties of cross-linked membranes are investigated in detail. All the cross-linked membranes show lower methanol permeability and better dimensional stability compared with the pristine SPEEK membrane. SPEEK-N30 with the 30 wt % Nafion shows a methanol permeability of 0.73 × 10−6 cm2 s−1 and a water uptake of 24.4% at 25 °C, which are lower than those of the pristine membrane. Meanwhile, the proton conductivity of SPEEK-N30 still remains at 0.041 S cm−1 at 25 °C, which is comparable to that of the pristine SPEEK membrane. All the results indicate that these cross-linked membranes based on SPEEK/Nafion show good prospect for the use as proton exchange membranes.  相似文献   

8.
Sulfonated poly(ether ether ketone)s (SPEEKs) are substituted on the main chain of the polymer by nitro groups and blended with Nafion® to attain composite membranes. The sulfonation, nitration and blending are achieved with a simple, inexpensive process, and the blended membranes containing the nitrated SPEEKs reveal a liquid-liquid phase separation. The blended membranes have a lower water uptake compared to recast Nafion®, and the methanol permeability is reduced significantly to 4.29 × 10−7-5.34 × 10−7 cm2 s−1 for various contents of nitrated SPEEK for S63N17, and 4.72 × 10−7-7.11 × 10−7 cm2 s−1 for S63N38, with a maximum proton conductivity of ∼0.085 S cm−1. This study examines the single-cell performance at 80 °C of Nafion®/nitrated SPEEK membranes with various contents of nitrated SPEEK and a degree of nitration of 23-25 mW cm−2 for S63N17 and 24-29 mW cm−2 for S63N38. Both the power density and open circuit voltage are higher than those of Nafion® 115 and recast Nafion®.  相似文献   

9.
Sulfonated poly(ether ether ketone) containing hydroxyl groups (SPEEK-OH) has been prepared for use as a proton exchange membrane (PEM) by reducing the carbonyl groups on the main chain of the polymers. With the goal of reducing water uptake and methanol permeability, a facile thermal-cross-linking process is used to obtain the cross-linked membranes. The properties of the cross-linked membranes with different cross-linked density are measured and compared with the pristine membrane. Notably, SPEEK-4 with the highest cross-linked density shows a water uptake of 39% and a methanol permeability of 2.52 × 10−7 cm2 s−1, which are much lower than those of the pristine membrane (63.2% and 5.37 × 10−7 cm2 s−1, respectively). These results indicate that this simple approach is very effective to prepare cross-linked proton exchange membranes for reducing water uptake and methanol permeability.  相似文献   

10.
A drawback of sulfonated aromatic main-chain polymers such as sulfonated poly(ether ether ketone)s (SPEEKs) is their high methanol crossover when the proton conductivity is sufficient for direct methanol fuel cell (DMFC) applications. To overcome this disadvantage, in this paper, the SPEEK substrate was coated with the crosslinked chitosan (CS) barrier layer to form the two-layer composite membranes. Scanning electron microscope (SEM) micrographs showed that the CS layer was tightly adhered on the SPEEK substrate and the thickness of CS layer could be adjusted by varying the concentration of CS solution. It was noticed that with the increment of thickness of CS layer, the methanol diffusion coefficient of the composite membranes significantly dropped from 3.15 × 10−6 to 2.81 × 10−7 cm2 s−1 at 25 °C which was about one order of magnitude lower than those of the pure SPEEK and Nafion® 117 membranes. In addition to the effective methanol barrier, the composite membranes possessed adequate thermal stability (the 5% weight lose temperature exceeded 240 °C) and good proton conductivity. The proton conductivity of all composite membranes was in the order of 10−2 S cm−1 and increased with the elevation of temperature. Furthermore, the composite membranes exhibited much higher selectivity (conductivity/methanol diffusion coefficient) compared with the pure SPEEK and Nafion® 117 membranes. These results indicated that introducing the crosslinked CS layer onto the SPEEK surface was an effective method for improving the performance of the SPEEK membrane, especially for reducing the methanol crossover.  相似文献   

11.
Sulfonated poly(ether ether ketone)s (SPEEKs) were substituted on a polymer main chain that had previously been prepared by sulfonation of poly(ether ether ketone)s in concentrated sulfuric acid for a specified time. The product was then blended with Nafion® to create composite membranes. The blended SPEEK-containing membranes featured flaky domains dispersed in the Nafion® matrix. These blends possessed a high thermal decomposition temperature. Additionally, owing to the more crystalline, the blended membranes had a lower water uptake compared to recast Nafion®, the methanol permeability was reduced to 1.70 × 10−6 to 9.09 × 10−7 cm2 s−1 for various SPEEK concentrations, and a maximum proton conductivity of ∼0.050 S cm−1 was observed at 30 °C. The single-cell performances of the Nafion®/SPEEK membranes, with various SPEEK concentrations and a certain degree of sulfonation, were 15–25 mW cm−2 for SPEEK53 and 19–27 mW cm−2 for SPEEK63, at 80 °C. The power density and open circuit voltage were higher than those of Nafion® 115 (power density = 22 mW cm−2). The blended membranes satisfy the requirements of proton exchange membranes for direct methanol fuel cell (DMFC) applications.  相似文献   

12.
A series of novel sulfonated poly(ether ether ketone)s containing a cyanophenyl group (SPEEKCNxx) are prepared based on (4-cyano)phenylhydroquinone via nucleophilic substitution polycondensation reactions. To further improve their properties, novel composite membranes composed of sulfonated poly(ether ether ketone)s containing cyanophenyl group as an acidic component and aminated poly(aryl ether ketone) as a basic component are successfully prepared. Most of the membranes exhibit excellent thermal, oxidative and dimensional stability, low-swelling ratio, high proton conductivity, low methanol permeability and high selectivity. The proton conductivities of the membranes are close to Nafion 117 at room temperature. And especially, the values of SPEEKCN40 and its composite membranes are higher than Nafion 117 at 80 °C (0.17 S cm−1 of Nafion, 0.26 S cm−1 of SPEEKCN40, 0.20 S cm−1 of SPEEKCN40-1, and 0.18 S cm−1 of SPEEKCN40-2). Moreover, the methanol permeability is one order magnitude lower than that of Nafion 117. All the data prove that both copolymers and their composite membranes may be potential proton exchange membrane for fuel cells applications.  相似文献   

13.
The porosity effect of catalyst electrodes in membrane-electrode assemblies (MEAs) using a hydrocarbon-based polymer as electrolyte and ionomer was investigated on physical and electrochemical properties by varying the content of ionomer binder (dry condition) in the catalyst electrodes. The MEAs were compared with the Nafion®-based MEA using Nafion® 112 and 5 wt.% ionomer solution (EW = 1100) in terms of porosity values, scanning electron microscopic images, Nyquist plots, dielectric spectra and IV polarization curves. In this study, sulfonated poly(ether ether ketone) (SPEEK) membranes with 25 ± 5 μm of thickness and 5 wt.% ionomer solutions have been prepared. The prepared membranes were characterized in terms of FT-IR, DSC and proton conductivity. Proton conductivity of the SPEEK membranes was compared with one of the Nafion® membranes with relative humidity. The porosity of the catalyst electrodes was calculated using the properties of catalyst, ionomer solution and solvent. As a result, the performance of the new type polymer (i.e., SPEEK in this study)-based MEA with the similar membrane conductivity and porosity of the catalyst electrode in the Nafion® MEA was similar to that of the Nafion® MEA.  相似文献   

14.
Poly(ether ether ketone) (PEEK) and sulfonated poly(ether ether ketone) (SPEEK, IEC = 2.07 mequiv.g−1) have been synthesized via nucleophilic aromatic substitution reaction. Bromomethylated poly(ether ether ketone) (PEEK-Br) is then prepared and reacted with 2-benzimidazolethiol to obtain the benzimidazole grafted poly(ether ether ketone) (PEEK-BI). The structures of PEEK-Br and PEEK-BI are characterized by 1H NMR spectra. Composite membranes based on SPEEK and PEEK-BI are prepared and their properties used for fuel cells are studied in detail. The results show that the composite membranes exhibit greatly improved mechanical properties as well as reduced water uptake and methanol permeability compared with the pristine SPEEK membrane. The increased oxidative stability and selectivity indicate that the composite membranes are promising to be used as proton exchange membranes.  相似文献   

15.
In this paper, the blend membranes based on sulfonated poly(ether ether ketone) and sulfonated cyclodextrin as the proton conducting membranes for DMFCs usage are prepared and investigated. The incorporation of sulfonated cyclodextrin in SPEEK membranes is evaluated by the characteristic absorptions of FT-IR spectra. Thermal stability and micro-morphology of the blend membranes are determined by thermogravimetry analysis and scanning electron microscope tests. The properties of the blend membranes are investigated such as swelling behavior, methanol permeability and proton conduction as function of the fraction of sulfonated cyclodextrin. The methanol crossover could be suppressed by the incorporation of sulfonated cyclodextrin and the methanol permeability decreases when the methanol concentration increases from 2.5 M to 20 M. Proton conduction is also promoted by the introduction of sulfonated cyclodextrin and the proton conductivity increases with the increase of sulfonated cyclodextrin content. The calculated activation energy for proton conduction of the blend membranes is very low and the maximum value is 4.20 kJ mol−1, which is much lower than that of Nafion 115 (9.15 kJ mol−1, measured in our experiments). These data indicate that proton can transport easily through the blend membranes. The selectivity of the blend membranes, a compromise between proton conductivity and methanol permeability, is much higher than that of Nafion 115 at the sulfonated cyclodextrin content above 15 wt.%. The blend membranes with 15, 20, and 25 wt.% of sulfonated cyclodextrin are assembled in the practical DMFCs and their polarization curves with 2.5 M and 8.0 M methanol solution are determined, respectively. The membrane with 20 wt.% sulfonated cyclodextrin reaches the highest power density of 29.52 mW cm−2 at 120 mA cm−2 and 8.0 M methanol solution. These results suggest the potential usage of the SPEEK membranes incorporating with sulfonated cyclodextrin in DMFCs.  相似文献   

16.
We have prepared composite membranes for fuel cell applications. Cesium salt of tungstophosphoric acid (Cs-TPA) particles was synthesized by aqueous solutions of tungstophosphoric acid and cesium hydroxide and, Cs-TPA particles and sulfonated (polyether ether ketone) (SPEEK) with two sulfonation degrees (DS), 60 and 70%have been used. We examined both the effects of Cs-TPA in SPEEK membranes as functions of sulfonation degrees of SPEEK and the content of Cs-TPA. The performance of the composite membranes was evaluated in terms of water uptake, ion exchange capacity, proton conductivity, chemical stability, hydrolytic stability, thermal stability and methanol permeability. The morphology of the membranes was investigated with SEM micrographs. Increasing sulfonation degree of SPEEK from 60 to 70 caused agglomeration of the Cs-TPA particles. The methanol permeability was reduced to 4.7 × 10−7 cm2/s for SPEEK (DS: 60%)/Cs-TPA membrane with 10 wt.% Cs-TPA concentration, and acceptable proton conductivity of 1.3 × 10−1 S/cm was achieved at 80 °C under 100% RH. The weight loss at 900 °C increased with the addition of inorganic particles, as expected. The hydrolytic stability of the SPEEK/Cs-TPA based composite membranes was improved with the incorporation of the Cs-TPA particles into the matrix. We also noted that SPEEK60/Cs-TPA composite membranes were hydrolytically more stable than SPEEK70/Cs-TPA composite membranes. On the other hand, Methanol, water vapor, and hydrogen permeability values of SPEEK60 composite membranes were found to be lower than that of Nafion®.  相似文献   

17.
Sulfonated poly(ether ether ketone) (SPEEK)/4,4′-diglycidyl(3,3′,5,5′-tetramethylbiphenyl) epoxy resin (TMBP) composite membranes in situ polymerization were prepared for the purpose of improving the methanol resistance and mechanical properties of SPEEK membranes with high ion-exchange capacities (IEC) for the usage in the direct methanol fuel cells (DMFCs). The effects of introduction of TMBP content on the properties of the composite membranes were investigated in detail. The composite membranes have good mechanical, thermal properties, lower swelling ratio, lower water diffusion coefficient (0.87 × 10−5 cm2 s−1 at 80 °C) and better methanol resistance (5.26 × 10−7 cm2 s−1 at 25 °C) than SPEEK membranes. The methanol diffusion coefficients of the composite membranes are much lower than that of SPEEK membrane (17.5 × 10−7 cm2 s−1 at 25 °C). Higher selectivity was been found for the composite membranes in comparison with SPEEK. Therefore, the SPEEK/TMBP composite membranes show a good potential in DMFCs usages.  相似文献   

18.
In the present study, a series of the crosslinked sulfonated poly(ether ether ketone) (SPEEK) proton exchange membranes were prepared. The photochemical crosslinking of the SPEEK membranes was carried out by dissolving benzophenone and triethylamine photo-initiator system in the membrane casting solution and then exposing the resulting membranes after solvent evaporation to UV light. The physical and transport properties of crosslinked membranes were investigated. The membrane performance can be controlled by adjusting the photoirradiation time. The experimental results showed that the crosslinked SPEEK membranes with photoirradiation 10 min had the optimum performance for proton exchange membranes (PEMs). Compared with the non-crosslinked SPEEK membranes, the crosslinked SPEEK membranes with photoirradiation 10 min markedly improved thermal stabilities and mechanical properties as well as hydrolytic and oxidative stabilities, greatly reduced water uptake and methanol diffusion coefficients with only slight sacrifice in proton conductivities. Therefore, the crosslinked SPEEK membranes with photoirradiation 10 min were particularly promising as proton exchange membranes for direct methanol fuel cell (DMFC) applications.  相似文献   

19.
The crosslinked sulfonated poly (ether ether ketone)/2-acrylamido-2-methyl-1-propanesulfonic acid (SPEEK/AMPS) blend membranres were prepared and evaluated as proton exchange membranes for direct methanol fuel cell (DMFC) applications. The structure and morphology of SPEEK/AMPS membranes were characterized by FTIR and SEM, respectively. The effects of crosslinking and AMPS content on the performance of membranes were studied and discussed in detail. The proton conductivity and methanol diffusion coefficient of SPEEK/AMPS membranes increased gradually with the increase of AMPS content. Most SPEEK/AMPS membranes exhibited higher proton conductivity than Nafion® 117 (0.05 S cm−1 at 25 °C). However, all the membranes possessed much lower methanol diffusion coefficient compared with Nafion® 117 (2.38 × 10−6 cm2 s−1) under the same measuring conditions. Even the methanol diffusion coefficient (8.89 × 10−7 cm2 s−1) of SPEEK/AMPS 30 sample with the highest proton conductivity (0.084 S cm−1 at 25 °C) was only about one third of that of Nafion® 117. The selectivity of all the SPEEK/AMPS membranes was much higher in comparison with Nafion® 117 (2.8 × 104 S s cm−3). In addition, the SPEEK/AMPS membranes possessed relatively good thermal and hydrolytic stability. These results suggested that the SPEEK/AMPS membranes were particularly promising to be used as proton exchange membranes in DMFCs, and the high proton conductivity, low methanol diffusion coefficient and high selectivity were their primary advantages for DMFC applications.  相似文献   

20.
A series of crosslinkable sulfonated poly(arylene ether ketone)s (SPAEKs) were synthesized by copolymerization of 4,4′-biphenol with 2,6-difluorobenzil and 5,5′-carbonyl-bis(2-fluorobenzene-sulfonate). A facile crosslinking method was successfully developed, based on the cyclocondensation reaction of benzil moieties in polymer chain with 3,3′-diaminobenzidine to form quinoxaline groups acting as covalent and acid-base ionic crosslinking. The uncrosslinked and crosslinked SPAEK membranes showed high mechanical properties and the isotropic membrane swelling, while the later became insoluble in tested polar aprotic solvents. The crosslinking significantly improved the membrane performance, i.e., the crosslinked membranes had the lower membrane dimensional change, lower methanol permeability and higher oxidative stability than the corresponding precursor membranes, with keeping the reasonably high proton conductivity. The crosslinked membrane (C-B4) with an ion exchange capacity of 2.02 mequiv. g−1 showed a reasonably high proton conductivity of 111 mS cm−1 with a low water uptake of 42 wt% at 80 °C. C-B4 exhibited a low methanol permeability of 0.55 × 10−6 cm2 s−1 for 32 wt% methanol solution at 25 °C. The crosslinked SPAEK membranes have potential for PEFC and DMFC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号