首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La0.5Sr0.5Co0.5Ti0.5O3−δ perovskite oxide has been prepared as polycrystalline powder, characterized and tested as cathode and anode material for solid-oxide fuel cells. The oxidized material is suggested to present mixed ionic-electronic conductivity (MIEC) from “in-situ” neutron powder diffraction (NPD) experiments, complemented with transport measurements; the presence of a sufficiently high oxygen deficiency, with large displacement factors for oxygen atoms suggest a large lability and mobility combined with a semiconductor-like behaviour with a maximum conductivity of 29 S cm−1 at T = 850 °C. A complete reversibility towards reduction–oxidation processes has been observed, where the reduced Pm-3m perovskite with La0.5Sr0.5Co0.5Ti0.5O2.64 composition has been obtained by topotactical oxygen removal without abrupt changes in the thermal expansion. The oxidized material shows good performance working as a cathode with LSGM electrolyte, yielding output power densities close to 500 mW/cm2 at 850 °C. At intermediate temperatures (800 °C) it may be used as a cathode or as an anode, yielding power densities of 220 and 170 mW/cm2, respectively. When used simultaneously as cathode and anode a maximum power density of 110 mW/cm2 was obtained. Therefore, we propose the La0.5Sr0.5Co0.5Ti0.5O3−δ composition as a promising candidate for symmetrical electrode in intermediate-temperature SOFC.  相似文献   

2.
The cathode reaction mechanism of porous Sm0.5Sr0.5CoO3−δ, a mixed ionic and electronic conductor (MIEC), is studied through a comparison with the composite cathode Sm0.5Sr0.5CoO3−δ/Sm0.2Ce0.8O1.9. First, the cathodic behaviour of porous Sm0.5Sr0.5CoO3−δ and Sm0.5Sr0.5CoO3−δ/Sm0.2Ce0.8O1.9 are observed for micro-structure and impedance spectra according to Sm0.2Ce0.8O1.9 addition, thermal cycling and long-term properties. The cathode reaction mechanism is discussed in terms of frequency response, activation energy, reaction order and electrode resistance for different oxygen partial pressures p(O2) at various temperatures. Three elementary steps are considered to be involved in the cathodic reaction: (i) oxygen ion transfer at the cathode-electrolyte interface; (ii) oxygen ion conduction in the bulk cathode; (iii) gas phase diffusion of oxygen. A reaction model based on the empirical equivalent circuit is introduced and analyzed using the impedance spectra. The electrode resistance at high frequency (Rc,HF) in the impedance spectra represents reaction steps (i), due to its fast reaction rate. The electrode resistance at high frequency is independent of p(O2) at a constant temperature because the semicircle of Rc,HF in the complex plane of the impedance spectra is held constant for different values of p(O2). Reaction steps (ii) and (iii) are the dominant processes for a MIEC cathode, according to the analysis results. The proposed cathode reaction model and results for a solid oxide fuel cell (SOFC) well describe a MIEC cathode with high ionic conductivity, and assist the understanding of the MIEC cathode reaction mechanism.  相似文献   

3.
In this study, we will report our investigation for La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM) based anodes impregnated with solutions of cobalt (Co) nitrate. A YSZ supported SOFC with pure LSCrM anode and La0.7Sr0.3MnO3 (LSM) cathode exhibits the maximum power density (Pmax) of 58.7 and 5.2 mW cm−2 at 850 °C in dry H2 and dry CH4. After the modification of anode with Co nitrate, the Pmax reaches 196.2 mW cm−2 in dry H2 and 28.5 mW cm−2 in dry CH4, about 3.34 times and 5.48 times increase, respectively. These results indicate that Co is also a potential catalyst for LSCrM anode. Moreover, the effect of impregnation amount of catalyst on the cell performance is also evaluated in this study.  相似文献   

4.
The properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) + Sm0.2Ce0.8O1.9 (SDC) (70:30 in weight ratio) composite cathode for intermediate-temperature solid-oxide fuel cells were investigated. Mechanical mixing of BSCF with SDC resulted in the adhesion of fine SDC particles to the surface of coarse BSCF grains. XRD, SEM-EDX and O2-TPD results demonstrated that the phase reaction between BSCF and SDC was negligible, constricted only at the BSCF and SDC interface, and throughout the entire cathode with the formation of new (Ba,Sr,Sm,Ce)(Co,Fe)O3−δ perovskite phase at a firing temperature of 900, 1000, and ≥ 1050 °C, respectively. The BSCF + SDC electrode sintered at 1000 °C showed an area specific resistance of ∼0.064 Ω cm2 at 600 °C, which is a slight improvement over the BSCF (0.099 Ω cm2) owing to the enlarged cathode surface area contributed from the fine SDC particles. A peak power density of 1050 and ∼382 mW cm−2 was reached at 600 and 500 °C, respectively, for a thin-film electrolyte cell with the BSCF + SDC cathode fired from 1000 °C.  相似文献   

5.
Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF-Ag) as oxygen reduction electrodes for a protonic intermediate-temperature solid-oxide fuel cell (SOFC-H+) with BaZr0.1Ce0.8Y0.1O3 (BZCY) electrolyte was investigated. The BSCF-Ag electrodes were prepared by impregnating the porous BSCF electrode with AgNO3 solution followed by reducing with hydrazine and then firing at 850 °C for 1 h. The 3 wt.% silver-modified BSCF (BSCF-3Ag) electrode showed an area specific resistance of 0.25 Ω cm2 at 650 °C in dry air, compared to around 0.55 Ω cm2 for a pure BSCF electrode. The activation energy was also reduced from 119 kJ mol−1 for BSCF to only 84 kJ mol−1 for BSCF-3Ag. Anode-supported SOFC-H+ with a BZCY electrolyte and a BSCF-3Ag cathode was fabricated. Peak power density up to 595 mW cm−2 was achieved at 750 °C for a cell with 35 μm thick electrolyte operating on hydrogen fuel, higher than around 485 mW cm−2 for a similar cell with BSCF cathode. However, at reduced temperatures, water had a negative effect on the oxygen reduction over BSCF-Ag electrode, as a result, a worse cell performance was observed for the cell with BSCF-3Ag electrode than that with pure BSCF electrode at 600 °C.  相似文献   

6.
A new cobalt-free perovskite oxide Pr0.5Sr0.5Fe0.8Cu0.2O3−δ (PSFC) has been synthesized and evaluated as cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The chemical compatibility of PSFC with Sm0.2Ce0.8O1.9 (SDC) electrolyte has be proven by XRD, and its electrical conductivity reaches the maximum value of 264.1 S cm−1 at 475 °C. Symmetrical cells with the configuration of PSFC/SDC/PSFC are used for the impedance study and the polarization resistance (Rp) of PSFC cathode is as low as 0.050 Ω cm2 at 700 °C. Single cells, consisting of Ni–YSZ/YSZ/SDC/PSFC structure, are assembled and tested from 550 °C to 800 °C with wet hydrogen (∼3% H2O) as fuel and static air as oxidant. A maximum power density of 1077 mW cm−2 is obtained at 800 °C. All the results suggest that the cobalt-free perovskite oxide PSFC is a very promising cathode material for application in IT-SOFC.  相似文献   

7.
The present work aims at the investigation of the electrochemical properties of SrTi0.5Fe0.5O3−δ as a membrane material for hydrogen production via electrochemical reforming. The dependence of the electrical conductivity on the oxygen partial pressure, as well as the oxygen permeability in the range of 10−20 atm ≤ pO2pO2 ≤ 10−14 atm is examined. The oxygen permeability is measured by an electrochemical method. The dependences of ion current as a function of the electromotive force (EMF) at various temperatures, oxygen partial pressures and the membrane surface conditions (rough and activated by PrOx) are studied. Finally, the values of hydrogen flux at different temperatures are calculated and a long term investigation during 600 h at pO2pO2 = 10−19 atm, T = 1173 K is carried out. According to the present results, the permeation current increases with the increase of temperature, oxygen partial pressure gradient and activation by PrOx. The long term investigation shows that the electrical resistance of the SrTi0.5Fe0.5O3−δ ceramic membrane increases by 10%, possibly due to the formation of micro-domains into the material's volume and the decrease in the grain boundary conductivity, because of the segregation of dopant-rich layers near the grain boundaries.  相似文献   

8.
Sm0.5Sr0.5CoO3−δ–Ce0.8Sm0.2O2−δ (SSC–SDC) composites, which are often used as the cathodes for solid oxide fuel cells (SOFCs) with oxygen-ion conducting electrolytes, have been recently shown to be also applicable in SOFCs based on proton conductors such as BaZr0.1Ce0.7Y0.2O3−δ (BZCY). The electrochemical performances of blank SSC–SDC electrodes on BZCY electrolytes are substantially improved in this work by impregnating SSC nanoparticles additionally. When the loading increases, the interfacial polarization resistance of the symmetric cell decreases gradually at first, notably when it exceeds 14 wt.%, and to the lowest value at about 22 wt.%. Furthermore, impregnating SSC reduces the low-frequency-arc resistance that corresponds to the surface exchange step. In addition, impregnating SSC reduces the activation energy for oxygen reduction from 1.14 to 0.70 eV, thus resulting in significantly improvement on electrode performance at the reduced temperatures for SOFCs based on proton conductors.  相似文献   

9.
Oxides with perovskite structure and composition: La0.5Sr0.5Co0.5Fe0.5O3−δ, La0.5Ba0.5Co0.5Fe0.5O3−δ, Sm0.5Sr0.5Co0.5Fe0.5O3−δ and Sm0.5Ba0.5Co0.5Fe0.5O3−δ were synthesized by a sol-gel EDTA based method. Their physico-chemical properties were evaluated by structural (XRD), transport (electrical conductivity, Seebeck coefficient), and high temperature oxygen nonstoichiometry measurements (TG, δ). A distorted perovskite structure was observed for all of the samples, varying with A-site average radius of cations and tolerance factor t. TG measurements, which were performed in air and in reducing atmosphere allowed to determine the initial, as well as the high temperature dependence of the oxygen nonstoichiometry δ for all materials. At high temperatures the electrical conductivity of the measured samples showed a characteristic maximum and corresponding increase of the Seebeck coefficient. Both effects can be interpreted as a result of a formation of the oxygen vacancies. Apart from Sm0.5Ba0.5Co0.5Fe0.5O3−δ composition, all other materials possess very high electrical conductivity at high temperatures, well exceeding 100 S cm−1. A custom made IT-SOFC cells were constructed with Ce0.85Gd0.15O1.925 sinters as a support. Their performance was evaluated in 600-800 °C range. Despite rather similar transport properties of La0.5Sr0.5Co0.5Fe0.5O3−δ, La0.5Ba0.5Co0.5Fe0.5O3−δ and Sm0.5Sr0.5Co0.5Fe0.5O3−δ perovskites, the best electrochemical properties were recorded in case of the cell with La0.5Sr0.5Co0.5Fe0.5O3−δ based cathode.  相似文献   

10.
Perovskite structure Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) powders have been successfully synthesized by glycine–nitrate combustion process. A porous and crack-free BSCF cathode is obtained by spraying the slurry of BSCF powders and terpineol onto LSGM pellet. The oxygen reduction reaction mechanism has been investigated by AC impedance spectroscopy and cyclic voltammetry method. AC impedance spectroscopy analysis shows that there are two different processes in the cathode reaction which are related to oxygen dissociation/adsorption and bulk oxygen diffusion. And the molecular oxygen is involved in the rate-determining step. The polarization resistance decreases with an increase of temperature and the oxygen partial pressure. With an increase of the applied DC bias, the logarithm of the polarization resistance decreases linearly due to additional oxygen vacancies and the lowered chemical potential of oxygen at the BSCF/LSGM interface by the applied voltage. The exchange current density reaches to 182 mA cm−2 at 700 °C, suggesting that the ORR kinetics at the BSCF/LSGM interface is high due to the excellent mixed ionic and electronic conductivity of BSCF.  相似文献   

11.
La0.8Sr0.2Co0.5Fe0.5O3−δ (LSCF) cathodes infiltrated with electrocatalytically active Pd and (Gd,Ce)O2 (GDC) nanoparticles are investigated as high performance cathodes for the O2 reduction reaction in intermediate temperature solid oxide fuel cells (IT-SOFCs). Incorporation of nano-sized Pd and GDC particles significantly reduces the electrode area specific resistance (ASR) as compared to the pure LSCF cathode; ASR is 0.1 Ω cm2 for the reaction on a LSCF cathode infiltrated with 1.2 mg cm−2 Pd and 0.06 Ω cm2 on a LSCF cathode infiltrated with 1.5 mg cm−2 GDC at 750 °C, which are all significantly smaller than 0.22 Ω cm2 obtained for the reaction on a conventional LSCF cathode. The activation energy of GDC- and Pd-impregnated LSCF cathodes is 157 and 176 kJ mol−1, respectively. The GDC-infiltrated LSCF cathode has a lower activation energy and higher electrocatalytic activity for the O2 reduction reaction, showing promising potential for applications in IT-SOFCs.  相似文献   

12.
A Sm0.5Sr0.5CoO3−δ-Ce0.8Sm0.2O2−δ (SSC-SDC) composite is employed as a cathode for proton-conducting solid oxide fuel cells (H-SOFCs). BaZr0.1Ce0.7Y0.2O3−δ (BZCY) is used as the electrolyte, and the system exhibits a relatively high performance. An extremely low electrode polarization resistance of 0.066 Ω cm2 is achieved at 700 °C. The maximum power densities are: 665, 504, 344, 214, and 118 mW cm−2 at 700, 650, 600, 550, and 500 °C, respectively. Moreover, the SSC-SDC cathode shows an essentially stable performance for 25 h at 600 °C with a constant output voltage of 0.5 V. This excellent performance implies that SSC-SDC, which is a typical cathode material for SOFCs based on oxide ionic conductor, is also a promising alternative cathode for H-SOFCs.  相似文献   

13.
A-site cation-deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ ((BS)1−xCF) oxides were synthesized and evaluated as cathode materials for intermediate-temperature solid-oxide fuel cells (ITSOFCs). The material's thermal expansion coefficient, electrical conductivity, oxygen desorption property, and electrocatalytic activity were measured. A decrease in both the electronic conductivity and the thermal expansion coefficient was observed for increasing values of the stoichiometric coefficient, x. This effect was attributed to the creation of additional oxygen vacancies, the suppression of variation in the oxidation states of cobalt and iron, and the suppression of the spin-state transitions of cobalt ions. The increase in A-site cation deficiency resulted in a steady increase in cathode polarization resistance, because impurities formed at the cathode/electrolyte interface, reducing the electronic conductivity. A single SOFC equipped with a BS0.97CF cathode exhibited peak power densities of 694 and 893 mW cm−2 at 600 and 650 °C, respectively, and these results were comparable with those obtained with a Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode. Slightly A-site cation-deficient (BS)1−xCF oxides were still highly promising cathodes for reduced temperature SOFCs.  相似文献   

14.
A cobalt-free Sm0.5Sr0.5FeO3−δ–BaZr0.1Ce0.7Y0.2O3−δ (SSF–BZCY) was developed as a composite cathode material for proton-conducting solid oxide fuel cells (H-SOFC) based on proton-conducting electrolyte of stable BZCY. The button cells of Ni-BZCY/BZCY/SSF–BZCY were fabricated and tested from 550 to 700 °C with humidified H2 (~3% H2O) as a fuel and ambient oxygen as oxidant. An open-circuit potential of 1.024 V, maximum power density of 341 mW cm−2, and a low electrode polarization resistance of 0.1 Ω cm2 were achieved at 700 °C. The experimental results indicated that the SSF–BZCY composite cathode is a good candidate for cathode material.  相似文献   

15.
The electrochemical properties of an Sm0.5Sr0.5CoO3−δ/Co3O4 (SSC/Co3O4) composite cathode were investigated as a function of the cathode-firing temperature, SSC/Co3O4 composition, oxygen partial pressure and CO2 treatment. The results showed that the composite cathodes had an optimal microstructure at a firing temperature of about 1100 °C, while the optimum Co3O4 content in the composite cathode was about 40 wt.%. A single cell with this optimized C40-1100 cathode exhibited a very low polarization resistance of 0.058 Ω cm2, and yielded a maximum power density of 1092 mW cm−2 with humidified hydrogen fuel and air oxidant at 600 °C. The maximum power density reached 1452 mW cm−2 when pure oxygen was used as the oxidant for a cell with a C30-1100 cathode operating at 600 °C due to the enhanced open-circuit voltage and accelerated oxygen surface-exchange rate. X-ray diffraction and thermogravimetric analyses, as well as the electrochemical properties of a CO2-treated cathode, also implied promising applications of such highly efficient SSC/Co3O4 composite cathodes in single-chamber fuel cells with direct hydrocarbon fuels operating at temperatures below 500 °C.  相似文献   

16.
In order to improve the electrical conductivity of the SrSc0.2Co0.8O3−δ (SrScCo) electrode, a composite of 70 wt% SrSc0.2Co0.8O3−δ and 30 wt% Sm0.5Sr0.5CoO3−δ (SrScCo + SmSrCo) was prepared and investigated for electrochemical oxygen reduction at intermediate temperatures. The phase reaction between SrScCo and SmSrCo and its effect on the electrical conductivity, oxygen vacancy concentration and oxygen mobility were examined by XRD, 4-probe DC conductivity measurement, iodometry titration and O2-TPD experiment, respectively. The results showed that the composite reached a maximum conductivity around 123 S cm−1 at 600 °C, nearly five times that of SrScCo. AC impedance results showed that the electron charge-transfer process was greatly improved by forming the composite electrode, while the oxygen-ion charge-transfer process was somewhat deteriorated. By firing at 1000 °C for 2 h, a SOFC with the SrScCo + SmSrCo cathode and thin-film SDC electrolyte delivered peak power densities of 1100 and 366 mW cm−2 at 600 and 500 °C, respectively, which were only modestly lower than those of a similar cell with a pure SrScCo cathode.  相似文献   

17.
The Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) cathode for solid oxide fuel cell has been prepared by glycine–nitrate combustion process. Crystal structure and chemical state of BSCF have been studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). XRD pattern indicates that a single cubic perovskite phase of BSCF oxide is successfully obtained after calcination at 850 °C for 2 h. XPS results show there exists a little amount of SrCO3 in the surface of BSCF. Co2p spectra indicate that some Co3+ ions have changed into Co4+ ions to maintain the electrical neutrality. O1s spectra present that adsorbed oxygen species appear in the surface BSCF oxide.  相似文献   

18.
Novel, Sr-substituted A-site ordered perovskites with GdBa0.5Sr0.5Co2−xFexO5+δ (0 ≤ x ≤ 2) chemical composition were studied, and results of measurements of their phase composition, crystal structure, oxygen content δ, transport properties and chemical stability in relation to ceria electrolyte are presented in this work. It was found that despite 50% substitution of Ba by Sr, the tendency of ordering in A-sublattice is retained in Co-rich materials, but with the increase of iron content, a significant amount of unordered, but also perovskite phase appears. Compounds with high Co content possess highest electrical conductivity, which for GdBa0.5Sr0.5Co2O5+δ greatly exceeds 1000 S cm−1 at temperatures above 400 °C. Seebeck coefficient remains positive for all studied compositions in 25–850 °C temperature range, indicating dominance of holes as main charge carriers. The double perovskite structure is responsible for a high deviation from the oxygen stoichiometry in studied materials, which increases considerably above 300 °C.  相似文献   

19.
This study investigates the microstructure and electrochemical properties of Sm0.5Sr0.5Co0.8Cu0.2O3−δ (SSC-Cu) cathode infiltrated with Ce0.8Sm0.2O1.9 (SDC). The newly formed nanosized electrolyte material on the cathode surface, leading the increase in electrochemical performances is mainly attributed to the creation of electrolyte/cathode phase boundaries, which considerably increases the electrochemical sites for oxygen reduction reaction. Based on the experiment results, the 0.4 M SDC infiltration reveals the lowest cathode polarization resistance (RP), the cathode polarization resistances (Rp) are 0.117, 0.033, and 0.011 Ω cm2 at 650, 750, and 850 °C, and the highest peak power density, are 439, 659, and 532 mW cm−2 at 600, 700, and 800 °C, respectively. The cathode performance in SOFCs can be significantly improved by infiltrating nanoparticles of SDC into an SSC-Cu porous backbone. This study reveals that the infiltration approach may apply in SOFCs to improve their electrochemical properties.  相似文献   

20.
The Sm0.5Sr0.5CoO3−δ (SSC) with perovskite structure is synthesized by the glycine nitrate process (GNP). The phase evolution of SSC powder with different calcination temperatures is investigated by X-ray diffraction and thermogravimetric analyses. The XRD results show that the single perovskite phase of the SSC is completely formed above 1100 °C. The anode-supported single cell is constructed with a porous Ni-yttria-stabilized zirconia (YSZ) anode substrate, an airtight YSZ electrolyte, a Sm0.2Ce0.8O2−δ (SDC) barrier layer, and a screen-printed SSC-SDC composite cathode. The SEM results show that the dense YSZ electrolyte layer exhibits the good interfacial contact with both the Ni-YSZ and the SDC barrier layer. The porous SSC-SDC cathode shows an excellent adhesion with the SDC barrier layer. For the performance test, the maximum power densities are 464, 351 and 243 mW cm−2 at 800, 750 and 700 °C, respectively. According to the results of the electrochemical impedance spectroscopy (EIS), the charge-transfer resistances of the electrodes are 0.49 and 1.24 Ω cm2, and the non charge-transfer resistances are 0.48 and 0.51 Ω cm2 at 800 and 700 °C, respectively. The cathode material of SSC is compatible with the YSZ electrolyte via a delicate scheme employed in the fabrication process of unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号