首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mille-feuille structure, which comprises both sides of dense layer are sandwiched by porous layers, is one of the promising structures for 3-dimensional (3D) all-solid-state battery. The porous layers should have 3-dimensionally ordered macroporous structure to obtain large contact area between electrolyte and electrode. Li0.35La0.55TiO3 (LLT) solid electrolyte with the mille-feuille structure was fabricated by the suspension filtration method. The dense layer was sintered well, no grain boundary was observed. The porous layers contacted well with dense layer. Thicknesses of dense and porous layers were 30 and 26 μm, respectively. To check compatibility of the mille-feuille LLT with all-solid-state Li ion battery, chronopotentiometry of symmetric cell with LiMn2O4/mille-feuille LLT/LiMn2O4 configuration was measured. Charge and discharge currents were clearly observed, indicating that the cell was successfully operated.  相似文献   

2.
We report on the structure and lithium ion transport properties of Li1.5Al0.5Ge1.5(PO4)3 (LAGP). This material is commercially available and is prepared as amorphous powders via a flame spray technique called Flash Creation Method (FCM). We crystallize and sinter the amorphous powders at different temperatures in order to alter grain size and grain boundary properties. The structure is then characterized by means of powder X-ray diffraction, atomic force microscopy, scanning electron microscopy and transmission electron microscopy with energy dispersive X-ray spectroscopy. AC impedance spectroscopy is used to study lithium ion transport. A maximum total conductivity of 2 × 10−4 S cm−1 at room temperature is found for a sample sintered at 750 °C for 2 h. In order to distinguish between grain and grain boundary contributions to the impedance spectra, equivalent circuit fits are carried out. The results are analysed in the framework of the classical brick layer model and of a finite-element approach taking into account non-ideal grain contacts. Our experimental results for the grain and grain boundary resistances are in good agreement with the predications of the finite-element approach.  相似文献   

3.
In order to improve performance of all-solid-state lithium ion battery with honeycomb structure, a compatibility of two commonly used cathode materials, LiCoO2 and LiMn2O4, to Li0.55La0.35TiO3 (LLT) solid electrolyte was studied. LiCoO2/honeycomb LLT and LiMn2O4/honeycomb LLT half cells were fabricated by the impregnation of mixture of the cathode material with its precursor sol into honeycomb holes followed by the calcination. Impurity phases were observed at interface between LiCoO2 and honeycomb LLT, while no impurity phase was confirmed in the case of LiMn2O4. In half cell test, the LiMn2O4/honeycomb LLT cell showed about 6 times larger discharge capacity than the LiCoO2/honeycomb LLT cell, because of high internal resistance of the LiCoO2/honeycomb LLT cell caused by the impurity phases. It can be said that the formation of low resistance interface at active material/electrolyte is one of the most important key to improve performance of the all-solid-state battery. Using LiMn2O4 instead of LiCoO2, better interface between cathode material and LLT was obtained.  相似文献   

4.
A composite electrode between three-dimensionally ordered macroporous (3DOM) Li0.35La0.55TiO3 (LLT) and LiMn2O4 was fabricated by colloidal crystal templating method and sol–gel process. A close-packed PS beads with the opal structure was prepared by filtration of a suspension containing PS beads. Li–La–Ti–O sol was injected by vacuum impregnation process into the voids between PS beads, and then was heated to form 3DOM-LLT. Three-dimensionally ordered composite material consisting of LiMn2O4 and LLT was prepared by sol–gel process. The prepared composite was characterized with SEM and XRD. All solid-state Li-ion battery was fabricated with the LLT–LiMn2O4 composite electrode as a cathode, dry polymer electrolyte and Li metal anode. The prepared all solid-state cathode exhibited a volumetric discharge capacity of 220 mAh cm−3.  相似文献   

5.
Two typical electrolytes, i.e., 8YSZ (8 mol% yttria-stabilized zirconia) and CGO10 (10 mol% Gd-doped ceria), with Si contents of ∼30 ppm and ≥500 ppm were prepared, whose grain-boundary (GB) conductivities should be controlled by intrinsic (space-charge layer) and extrinsic (resistive siliceous films) effects, respectively. 1 at% FeO1.5 was loaded into these materials via a conventional mixed-oxide method. A comparative study was carried out to demonstrate how 1 at% Fe addition affected these materials with different levels of SiO2 impurities with respect to sintering, GB and GI (grain interior) conductivities. FeO1.5 was found to be a sintering promoter for both 8YSZ and CGO10 ceramics, but it is more effective to enhance the densification of ceria-based electrolytes. A reduction in sintering temperature of ∼200 °C for 1 at% Fe-doped CGO10 was achieved compared with ∼110 °C reduction for the 8YSZ with the same amount of Fe loading. The effect of FeO1.5 loading on the electrical conduction was found to be different, depending significantly on the impurity level and the types of electrolytes. In general, the loading of FeO1.5 is positive for ceria-based ceramics since FeO1.5 has a scavenging effect on SiO2 impurity with little effect on the GI conduction. Although the scavenging behavior of FeO1.5 was also found in the impure 8YSZ, it led to a significant reduction in the GI conductivity.  相似文献   

6.
Li7La3Zr2O12 electrolytes doped with different amounts of Al (0, 0.2, 0.7, 1.2, and 2.5 wt.%) were prepared by a polymerized complex (Pechini) method. The influence of aluminum on the structure and conductivity of Li7La3Zr2O12 were investigated by X-ray diffraction (XRD), impedance spectroscopy, scanning electron microscopy (SEM), and thermal dilatometry. It was found that even a small amount of Al (e.g. 0.2 wt.%) added to Li7La3Zr2O12 can greatly accelerate densification during the sintering process. SEM micrographs showed the existence of a liquid phase introduced by Al additions which led to the enhanced sintering rate. The addition of Al also stabilized the higher conductivity cubic form of Li7La3Zr2O12 rather than the less conductive tetragonal form. The combination of these two beneficial effects of Al enabled greatly reduced sintering times for preparation of highly conductive Li7La3Zr2O12 electrolyte. With optimal additions of Al (e.g. 1.2 wt.%), Li7La3Zr2O12 electrolyte sintered at 1200 °C for only 6 h showed an ionic conductivity of 2.0 × 10−4 S cm−1 at room temperature.  相似文献   

7.
The electrochemical performances of Ag-(BaO)0.11(Bi2O3)0.89 (BSB) composite cathodes on Ce0.8Sm0.2O1.9 electrolytes have been investigated for intermediate temperature solid oxide fuel cells (ITSOFCs) using ac impedance spectroscopy from 500 to 700 °C. Results indicate that the electrochemical properties of these composites are quite sensitive to the composition and the microstructure of the cathode. The optimum BSB addition (50% by volume) to Ag resulted in about 20 times lower area specific resistance (ASR) at 650 °C. The ASR values for the Ag50-BSB and Ag cathodes were 0.32 and 6.5 Ω cm2 at 650 °C, respectively. The high performances of Ag-BSB cathodes are determined by the high catalytic activity for oxygen dissociation and ionic conductivity of BSB, and by the excellent catalytic activity for oxygen reduction of silver. The maximum power density of the Ag50-BSB cathode was 224 mWcm−2 at 650 °C, which classify this composite as a promising material for ITSOFC.  相似文献   

8.
Solid oxide fuel cells with Sr0.8La0.2TiO3 anode-side supports, Ni- Sm-doped ceria adhesion layer, Ni- Y2O3-stabilized ZrO2 (YSZ) anode active layer, YSZ electrolyte, and La0.8Sr0.2MnO3(LSM)–YSZ cathode are described. These cells are stable in simulated natural gas at current densities as low as 0.2 A cm−2. This represents much-improved stability against coking in natural gas, compared with conventional Ni–YSZ anode-supported SOFCs which rapidly coke, even at higher current densities. Cell operation in H2 fuel with 50–100 ppm, H2S results in an initial decrease in cell power density, but no long-term degradation occurs and full recovery to the initial performance level is observed after dry H2 fuel flow is restored. Degradation is not observed during or after seven redox cycles between H2 and air.  相似文献   

9.
The hydrogen storage systems Li3AlN2 and Li3FeN2 were synthesized mechanochemically by two different routes. In each case an intermediate material formed after milling, which transformed into Li3MN2 (M = Al or Fe) upon annealing. The synthesis route had a measurable effect on the hydrogen storage properties of the material: Li3AlN2 prepared from hydrogenous starting materials (LiNH2 and LiAlH4) performed better than that synthesized from non-hydrogenous materials (Li3N and AlN). For both Li3AlN2 materials, the hydrogen storage capacity and the absorption kinetics improved significantly upon cycling. Ti-doped Li3AlN2 synthesized from LiNH2 and LiAlH4 showed the best hydrogen storage characteristics of all, with the best kinetics for hydrogen uptake and release, and the highest hydrogen storage capacity of 3.2 wt.%, of which about half was reversible. Meanwhile, Li3FeN2 synthesized from Li3N and Fe displayed similar kinetics to that synthesized from Li3N and FexN (2 ≤ x ≤ 4), but demonstrated lower gravimetric hydrogen storage capacities. Li3FeN2 displayed a hydrogen uptake capacity of 2.7 wt.%, of which about 1.5 wt.% was reversible. For both Li3AlN2 and Li3FeN2, doping with TiCl3 resulted in enhancement of hydrogen absorption kinetics. This represents the first study of a ternary lithium-transition metal nitride system for hydrogen storage.  相似文献   

10.
In present work, we reported an novel oxide-salt Al2O3NaAlO2 composite, which was prepared by mixing Al2O3 and Na2CO3 two phase materials in different weight ratio, and then sintering at 1100 °C. The X-ray diffraction pattern, scanning-electron microscope and impedance spectra are applied to characterize the crystal structure, morphology and electrical properties of the Al2O3NaAlO2 composite. The Al2O3NaAlO2 composite as electrolyte membrane was sandwiched by two pieces of Ni0.8Co0.15Al0.05Li-oxide (NCAL) electrode layer to construct advanced fuel cell. Optimizing the weight ratio of Al2O3 and NaAlO2, such cell delivered an highest power density of 789 mW/cm2 and an open circuit voltage (Voc) of 1.13 V at 575 °C. The superior performance is mainly due to the excellent ion-conducting of Al2O3NaAlO2 composites and the outstanding catalysis activity of the NCAL eletrodes. The EIS results revealed that the Al2O3NaAlO2 composite possessed superior ionic conductivity of 0.121 S/cm at 575 °C. The interfacial effects between oxide-salt two phase including space-charge and structural misfit at the interface region dominated the ion transport for Al2O3NaAlO2 composite.  相似文献   

11.
Gel polymer electrolytes (GPEs)-based on poly(methyl methacrylate) PMMA and propylene carbonate (PC) with LiClO4 or NaClO4 salt are prepared using either the commercial product Superacryl® or directly from the monomer and AIBN (2,2′-azobis(isobutyronitrile)) initiator. The nanostructured aluminum oxide is added to the mentioned systems in various ratios. Solutions of liquid PC–perchlorate and polymer electrolytes are compared with focus on ionic conductivity. The ionic conductivity of polymer-based electrolytes is significantly influenced (of almost by one half order of magnitude at room temperature) by the addition of nanosized Al2O3. On the contrary, the conductivity of liquid electrolytes is decreased by the addition of alumina in the blend. A slight enhancement of mechanical properties is observed.  相似文献   

12.
The aim of the work was to study the structural and electrical properties of the (Ba1−xSrx)(Zr0.9Y0.1)O3 and (Ba1−xSrx)(Zr0.9Y0.1)O3 solid solutions. The powders of different strontium content (x = 0, 0.03, 0.05 and 0.1) were prepared by a thermal decomposition of organo-metallic precursors containing ethylenediaminetetraacetate acid. Some parameters describing stability and transport properties of the perovskite structure, such as tolerance factor, specific free volume and global instability index, were calculated. It was found that the introduction of strontium into both solid solutions caused the increase of specific free volume and global instability index—these structures became a little less stable but, on the other hand, better ionic conductor. All samples were cubic perovskite and the substitution of strontium for barium caused the decrease of respective lattice parameters. Electrical conductivity measurements were performed by the d.c. four-probe method in controlled gas atmospheres containing Ar, air, H2 and/or H2O at the temperature from 300 to 800 °C. It was found that the conductivity depended on a chemical composition of the samples and the atmosphere. In general, the electrical conductivity was higher in wet atmospheres which contained oxygen, being in accordance with the model of a proton transport in the perovskite structure which assumed the presence of the oxygen vacancy. The solid solution containing 5 mol.% of strontium showed the highest conductivity and the lowest activation energy of conductivity regardless of the atmospheres.  相似文献   

13.
With a view to improving the electrical conductivity of Li2SO4 at the lowest possible temperature, Li2CO3 was added in the ratios of 10 – 90 mol% and its conductivity was measured. The system Li2SO4Li2CO3 has its eutectic at a composition of 60:40 mol%: this composition has the maximum conductivity of the series, 2.43 × 10?3 (ohm cm)?1 at 723 K. The high conductivity may be due to the quasiliquid state of the mobile species within the sublattice. Further, the addition of 5 mol% of LiCl to the eutectic gave rise to an increase in the conductivity, 1.13 × 10?3 (ohm cm)?1 at 553 K. This may be suitable as an electrolyte for application to power sources.  相似文献   

14.
SOFC composite electrodes of yttria-stabilized zirconia (YSZ) and either LaNi0.6Fe0.4O3 (LNF) or La0.91Sr0.09Ni0.6Fe0.4O3 (LSNF) were prepared by infiltration to a loading of 40 wt% of the perovskite into porous YSZ using aqueous solutions of the nitrate salts. XRD measurements indicated that the perovskite structures were formed following calcination at 850 °C, at which temperature the LNF and LSNF form small particles that coat the YSZ pores. Heating to 1100 °C causes the particles to form a dense film over the YSZ but caused no solid-state reaction. Calcination of an LNF-YSZ composite to 1200 °C led to an expansion of the LNF lattice, suggesting introduction of Zr(IV) into the perovskite; further heating to 1300 °C caused the formation of La2Zr2O7. For 850 °C calcination, the electrode performance of both LNF-YSZ and LSNF-YSZ composites was similar to that reported for composites of YSZ and La0.8Sr0.2FeO3 (LSF), with a current-independent impedance of approximately 0.1 Ω cm2 at 700 °C in air. For 1100 °C calcination, both LNF-YSZ and LSNF-YSZ composites exhibited impedances that decreased strongly under both anodic and cathodic polarization. The implications of these results for preparing electrodes based on LNF and LSNF are discussed.  相似文献   

15.
The interfacial layer formed between a lithium-ion conducting solid electrolyte, Li7La3Zr2O12 (LLZ), and LiCoO2 during thin film deposition was characterized using a combination of microscopy and electrochemical measurement techniques. Cyclic voltammetry confirmed that lithium extraction occurs across the interface on the first cycle, although the nonsymmetrical redox peaks indicate poor electrochemical performance. Using analytical transmission electron microscopy, the reaction layer (∼50 nm) was analyzed. Energy dispersive X-ray spectroscopy revealed that the concentrations of some of the elements (Co, La, and Zr) varied gradually across the layer. Nano-beam electron diffraction of this layer revealed that the layer contained neither LiCoO2 nor LLZ, but some spots corresponded to the crystal structure of La2CoO4. It was also demonstrated that reaction phases due to mutual diffusion are easily formed between LLZ and LiCoO2 at the interface. The reaction layer formed during high temperature processing is likely one of the major reasons for the poor lithium insertion/extraction at LLZ/LiCoO2 interfaces.  相似文献   

16.
Li2TiO3 is one of the most promising candidates among solid breeder materials. However, defects introduced into Li2TiO3 will act as the strong trapping sites for tritium. In the present study, mechanism of vacuum-annealing defects and its effect on release behavior of hydrogen isotopes in Li2TiO3 were investigated by means of X-ray diffraction, Raman spectroscopy, electron spin resonance and thermal desorption spectroscopy. The color of samples becomes dark blue and the defects were found to be introduced into Li2TiO3 when annealed in vacuum. This color change suggests the change from Ti4+ to Ti3+ due to decrease in oxygen content. The color recovers to white again after annealing in air. X-ray diffraction and Raman spectroscopy results indicate that there are no modifications on Li2TiO3 crystal phases, but on crystallinity. The main vacuum-annealing defects are E-centers and no other obvious types of defects were observed from electron spin resonance. Based on the experimental results, the production of defects by annealing in vacuum should be satisfied to the following conditions: (1) Li2TiO3 has been exposed in air more than 1 day; (2) Li2TiO3 must be annealed at the temperature higher than 300 °C; (3) Li2TiO3 should be annealed in vacuum lower than 10 Pa. E-centers formed under vacuum-annealing processes have considerable effects on release behavior of hydrogen isotopes investigated by thermal desorption spectroscopy and further should be considered in future fusion reactor. The present work gives some suggestions for future fusion reactors: (1) Li2TiO3 should be preserved in vacuum or kept from water vapor; (2) Li2TiO3 should be annealed at high temperature to remove the adsorbed water before loading into the facility, and must be finished within two days to avoid defects coming from reduction; (3) Li2TiO3 should be improved by adding more oxygen or other elements to refrain from defects introduced by reduction reaction.  相似文献   

17.
Considering that conventional lanthanum chromate (LaCrO3) interconnector is hard to be co-sintered with green anode, we have fabricated a novel bilayered interconnector which consists of La-doped SrTiO3 (Sr0.6La0.4TiO3) and Sr-doped lanthanum manganite (La0.8Sr0.2MnO3). Sr0.6La0.4TiO3 is conductive and stable in reducing atmosphere, locating on the anode side; while La0.8Sr0.2MnO3 is on the cathode side. A slurry-brushing and co-sintering method is applied: the Sr0.6La0.4TiO3 and La0.8Sr0.2MnO3 slurries are successively brushed onto green anode specimen, followed by co-firing course to form a dense bilayered Sr0.6La0.4TiO3/La0.8Sr0.2MnO3 interconnector. For operating with humidified hydrogen and oxygen at 900 °C, the ohmic resistances between anode and cathode/interconnector are 0.33 Ω cm2 and 0.186 Ω cm2, respectively. The maximum power density is 290 mW cm−2 for a cell with interconnector, and 420 mW cm−2 for a cell without it, which demonstrates that nearly 70% of the power output can be achieved using this bilayered Sr0.6La0.4TiO3/La0.8Sr0.2MnO3 interconnector.  相似文献   

18.
(Sm1−xDyx)2Zr2O7 (0 ≤ x ≤ 1) ceramics are prepared by a solid state reaction process at 1973 K for 10 h in air. (Sm1−xDyx)2Zr2O7 (0 ≤ x ≤ 0.3) ceramics exhibit a single phase of pyrochlore-type structure, while (Sm1−xDyx)2Zr2O7 (0.5 ≤ x ≤ 1.0) possess a defective fluorite-type structure. The full width at half-maxima in the Raman spectra increases with increasing Dy content, which indicates that the degree of structural disorder increases as the Dy content increases. The ionic conductivity of (Sm1−xDyx)2Zr2O7 ceramics is investigated by impedance spectroscopy over a frequency range of 0.2 Hz to 8 MHz in the temperature range of 873-1173 K in air and hydrogen atmospheres, respectively. The ionic conductivity has a maximum near the phase boundary between the pyrochlore- and the defective fluorite-type phases under identical temperature levels. The ionic conductivity is determined by the degree of structural disorder or unit cell free volume, which is depending on the Dy content. As the ionic conductivity in the hydrogen atmosphere is almost the same as that obtained in air, the conduction of (Sm1−xDyx)2Zr2O7 is purely ionic with negligible electronic conduction.  相似文献   

19.
Bin Li  Xi Wei  Wei Pan   《Journal of power sources》2008,183(2):498-505
Ce0.9Gd0.1O1.95 with various Mg doping contents was synthesized by citric acid-nitrate low temperature combustion process and sintered under different conditions. The crystal structures, microstructures and electrical properties were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and ac impedance spectroscopy. Low solubility of Mg2+ in Ce0.9Gd0.1O1.95 lattice was evidenced by XRD and FESEM micrographs. The samples sintered at 1300 °C exhibited the higher total conductivity than those sintered at 1100 and 1500 °C, with the maximum value of 1.48 × 10−2 S cm−1 (measured at 600 °C) at the Mg doping content of 6 mol%, corresponding to the minimum total activation energy (Etol) of 0.84 eV (150–400 °C). The effect of Mg doping on the electrical conductivity was significant particularly at higher sintering temperatures. At the sintering temperature of 1500 °C, the addition of Mg (10 mol%) enhanced the grain boundary conductivity by over 102 times comparing with that of undoped Ce0.9Gd0.1O1.95, which may be explained by the optimization of space charge layer due to the segregation of Mg2+ to the grain boundaries.  相似文献   

20.
A nanocrystalline composite of lithium nitride and lithium carbide was synthesized through melt infiltration of lithium metal into the mesopores of carbon aerogels followed by nitrogenation with nitrogen gas. The structure, surface properties, and morphology of the prepared samples were examined by XRD, N2 adsorption at 77 K, FE-SEM, FE-TEM, and TPD/MS. It was found that some of the lithium metal reacted with the carbon to form lithium carbide, and some of the lithium metal was transformed into lithium nitride by nitrogenation, yielding a composite of lithium nitride and lithium carbide. Relative to the bulk lithium nitride, the lithium nitride in the composite showed a significantly enhanced sequential hydrogen absorption capacity and a lowered temperature of hydrogenation/dehydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号